DOCUNMENRT RESUME

ED 116- 658 ' IR 002 90C
AUTHOR Gerlar b, Vernon S.; And Others
TITLE Algorithms in Learning, Teaching, and Instructional

Design. Studies in Systematic Instryction and
Training Technical Report 51201.

INSTITUTION Arizona State Univ., Tempe. Coll. of Education.
SPONS AGENCY rir Force Office of scientific Research, Arlington,
” Va.

PUB DATE . Dec 75

NOTE 70p. .

EDRS PRICE MP-$0.76 HC-$3.32 Plus Postage

DESCRIPTORS *ARlgorithms; *Instructional Design; Instructlonal
Systems; Research Problems; *State of the Art
Reviews; Teaching Methods <

ABSTRACT

An algorithm is defined here as an unambiguous
procedure which will always produce the correct result when applied
to any problem of a given class of problems. This paper gives an
extended discussion of the definition of an algorithm. It also
explores in detail the elements of an algorithm, the representation
of algorithms in standard prose, flow charts, coded graphs, linear
representation, list form and decision table form. It develops a
taxonony of algorlfhms and discusses at length the uses of algorithms
in instruction and in research and development problems. (JY)

>

©

ig!***************4****#*************************************** 3ok 0 o sk

* Documents acquired by ERIC include many informal unpublished

* paterials not available from other sources. ERIC makes every effort
* to obtain the best copy available. Nevertheless, items of marginal
* reproducibility are often encountered and this affects the gquality
* of the microfiche and hardcopy reproductions ERIC makes available

* yia the ERIC Docupent Reproduction Service (EDRS). EDRS is not

* responsible for the quality of the original document. Reproductions
x
x

supplied by EDRS are the best that can be made from the original.
**********************4#*#***

*

*
*
*
*®
*
*
*
*
*

 Rule Learning and Systematic Imatruction in’

Undergraduate Pilot Training

Vernon S. Gerlach, Principal Investigator

* ALGORITHMS IN LEARNING, TEACHING, AND

INSTRUCTIONAL DESIGN

Vernon S. Gerlach
Robert A. Reiser
Fritz H. Brecke

v

.

Technical Report #51201

(4

US DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

OCUMENT HAS BEEN REPRO-
;:ICSEDD EXACTLY AS REZFIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING 1T POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT.OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Research sponsored by the Air Force Office of Scientific Research,
Alr Force Systems Command, USAF, under Grant No. AFOSR 75-2900. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright

notation hereon.

College of Education
Arizona State University
Tempe, Arizona

December, 1975

IR 002 700

14

I
-

-PERMISSION 1O REPRODUCE THIS COPY-
RIGHTED MATERIAL HAS BEEN GRANTED BY

1 v rla i, Siete
; (!D‘-ﬂf?"‘z ol E]ﬁ‘?aga,
10 ERIC AND O ANIZATIONS OPERATING

UNOER AGREEMENTS WITH THE NATIONAL N
STTUTE OF EDUCATION FURTHER REPRO-
DUCTION OUTSIDE THE ERIC SYSTEM RE-
QUIRES PERMISSION Of THE COPYRIGHT

OWNER

Copyright 1975
Arizona State University
All rights reserved

-

“

r
Full Tt Provided by ERIC.

°

"III.

Y

Contents

¥

The Definition of Algorithm . . .

The Three Attributes ..
Attribute 1.

Attribute 2 .

—’/Attribute K

A Traditional Definition

The Relationship between Resultivity

and Replicability . .

A Revised Definition

On the Difference between Magic and Algorithms

The Problem Class, the Result Class o

and the User Class
Domain
Range

&
ooooooo

User

The Elements of an Algorithm

Introduction

Operator . . . « . . &
Discriminator
Syntactic structure .

Summary . . v ¢ v 0 e e e e .

IV. The Representation of Algorithms

Standard prose
Flow charfs e e e s s e s e s s
Coded graphs
v
B 4

10

11
11
11
12
13
15
15
19
19
20
20
21
21
22

23

-

vi

Linear representation .
List form .

Decision table form

L
o o

+ Summary .

V. Taxonomies of Algorithms . ,

The Uses of Algorithms in Instruction .

Algorithms as Aids to the Learner

- Algorithms as Aids to the Instructional Designer
Algorithms and.objectives e e e e e e e e e
Entry skills ?né learning
SR .. Proﬁpting ...‘. N
Individualized instruction
VII. Research and Development Probiems
Algbrithms for Learning and Teaching
Algorithms in Flying Training-.

Quasi~algorithmic prescriptions
and quasi-algorithms

Variables in algorithms . .
Syntactic variables .
éemantic variables
Pragmatic variables
Non—-textual algorithms
Epilogue . cvv v v v v b b e e e e e e e e
References

Appendix . . 4 i 4t e e e e e e e e e e e e e

0

. .
./‘:ﬁ_.

26

27

39
39
41
41
. 41

45
53

54

54
56
56
58
58
59
61

63

¢ List of Figures.

“1. Algorithm for Adding Fractions « ..
2. Euclidean Algorithm (Yersion 2) .o e e e
é. E§ample of an Identification Algorithm in Biology
4, 1Identification Algorithm after Landa (1974), p. 437
5. Algorithm for Forming the Possessf&e of Enélish Nouns
6. Algorithm for Adding Fracéionsl:
7. Decision Treé for Selecting Evaluation Models
8. Algorithm for Adding Fractions (Version 1) .
9. Algorithm for Pfoduginé a 3x3'Magic Square .
10. Bbgfeviated Flow Chart . . . « . « « « « &
11. A Reminder e e e e e e
%@. Euclidean Algorithm (Versionil)
13. Euclidean Algorithm (Versionan‘ ‘
14. Euclidean Algorithm (Ve;;ion 3 ...

15.

The Syntécfical Structure of the
r}Buclidean Algorithm (Version 1)

6

A

17
30
32
33
3%
40
42
46
47
48
49
50

51

257

3

 Acknowledgments
+ .

The authors are indebted to Dis. James Eubanks and Robert Haygood
and to Maryann Barron for careful .reading and critiquing of the paper
from first to final drafts; to Diane Stone for handling the typing,
editing, reproduction, and a myriad of other details with amazing cheer-
fulness and dispatch.

To each of them--thank ydu!

Above all, we take this occasion to thank Dr. William J. Burke,
Arizona State's Vice-president for Research from 1962-1975, for his
dedication and devotion to ‘the cause of university research and for
his encouragement and support during this and all our previous research
efforts. -

[

Vernon S.- Gerlach
Robert A. Reiser
. Fritz H. Brecke

~1

' I. On the Differenge‘bétween Magic and Algorithms

. "One-day Houdini attended the public demonstration of a French-made

flyirg nachine, a Voisin, a beautiful biplane with boxed wings, "a box S
rudder and three delicately strutted bicycle wheels. The avidtor flew

it over a race track and landed on the infield, and the next day his .
feat was described in the nedépapers. Houdini moved decisively. Within - l
a week he was the owner of a new Voisin biplane. It had cost him five ' ‘
thousand dollars. It came complete with a French mechanic who gave in-

struction in the art of flying. He secured the use of dn army parade .
grounds outside of Hamburg. In all the countries in which he played he -

always got on well with the military. Soldiers everywhere were fans of

his. Each morning at dawn he would drive to the parade grounds and sit

at the controls of the Voisin while the French mechanic lectured him on:

the function and purpose of the levers and pedals within reach of the

pilot. The plane was directed by means of a large steering wheel

mounted in the vertical position and attached by a shaft to the front

rudder. The'pilot sat behind the front rudder on a little seat between

the two wings. Behind him was the engine, and behind the engine was the
propeller. The Voisin was made of wood. The wings were covered in

fabric stretched taut and sized with varnish. The struts connecting the .

double wings were paneled with the same material. The Voisin looked

like a box kite. Houdini had his name painted in block letters on the

,outside panels of the wings and on the rear elevators. He could hardly

wait for his first.flight The patient mechanic drilled him in the vari-

ous operations required to get the machine aloft, maintain it in flight .
and land it, EVvery night Houdini did his act and every morning at dawn

he went out for his lessons. nally one morning when thz red sky was .
clear and the mechanic judged the wind couditions to be right, they

pushed th chine out of its shed and faced it into.the breeze.

Houdini climbed into the pilot's seat, turned his cap backwards and

pulled it down tight. He clutched the wheel. His eyes narrowed in con-
centration, he set his jaw firmly and he turned his head and nodded to

the mechanic, who spun the wood propeller. The engine fired. It was an

Enfield 80-horsepower job, supposedly better than the one the Wrights

themselves were using. Hardly daring to breathe, Houdini throtted the

engine, idled it, throttled it again. Finally he held up his thumb.

The mechanic ducked under the wings and pulled the wheel chocks. The

craft slowly moved forward. Houdini breathed faster and faster as the

Voisin picked up speed. Soon it was bumping along the ground and he

could feel the sensitive wings take on an intelligence of their own, as

if a disembodied presence had joined the enterprise. The machine lifted

off the ground. He thought he was dreaming. He had to willfully re-

strain his emotions, commanding himself sternly to keep the wings level,

‘to keep the throttle continuously in touch with the speed of the flight.

He was flying! His feet worked the pedals, he clasped the control wheel

and gently the rudder in front of him tilted down and the machine

climbed the sky. He dared to look down: the earth was fifty feet below -

-him. He no longer heard the ratcheting engine behind his ear. ‘He felt

the wind in his face and discovered he was shouting. . The guy wires

seemed to sing, the great wings above and below him nodded and dipped

and played in the air with their incredibly gentle intelligence. The

bilcycle wheels spun slowly, idly in the breeze. He was flying over a

8 | : ‘

- : e o :
.stand of trees. Gaining confidence he put the craft intér a'difficult
maneuver, 'a bank. The Voisin described a wide circle around the parade
.grounds. Then he could see the mechanic standirfig in the distance, by "the
shed, raising both arms in salute. Cooly, Houdini leveled the .-wings,
slipped under his breeze and began his descent.. The moment the wheels
touched down, the crudeness of the impact offended him. And when the

machine rolled-to a stop he wanted only to be airborne again." (Doctorow,
" .1975, pp. 84-86.) , ,

. -
N *) N -

-

" Hither Houdini was : magician of considerably greater magnitude than
_any of us has ‘heretofore suspected, or he used an extremely powerful
o algorithmo * LK

. ’) e

rd's t

ALGORITHM ?
WHATS AN
ALGORITHM ?

V?

IThis is not to deny the possrble role of other exiremely important
variables, such as luck.) . .

Ly

A4 - -~ RN -
- * . Iy * \' . -]
. The Definition of Algorithm ' . .
l\.
A student pilot is about to make his first attempt at flying a - k.
& ~ Vertical S-A maneuver in a flight simulator. Both his instructor pilot
R . qnd his manuals have told him that in order to make the transition from®
. straight and level o g%eﬁdy state climb Jhe should:” E .
v) . l. 'Apply power atf/‘smoothl slow;and steady rate. . ’

. 2. As soon-.as’ tfe alr speed starts to increase, increase the pitch
v e sufficiently to maintain 160 KIAS.) 3
3. Keep increasing both pitch and power while maintaining 160 KIAS
until attitude’fndicator is +1% bar width. -

°L 4. The tachometer should show 94 + 1X.

.)

5. The vertical velocity indicator should be at or approaching
1000'/minute,"

6. Fine tune the verticgl velocity to 1000'/minute by making very
small 4nd, siooth corrections.

- -
- v
o~

. 7. Trim for hands-off condition as soon as possible.
& £ - I'd
. The student pilot has been taught these verbal statements, now he is
about- to apply them, as’a progedure. .
2 ~
R , In the cqntext of flying training, procedure conveys information
about such things as flight parameters--numerical values such as the.
¢ power,, airgpeed, “vertical velocity, attitude, and heading for a given
maneuver. Brocedure tells the student pilot what to do. Sometimes pro-
cedure is recorded in books, films, tapes; sometimes the student pilot ‘.
. . muigt learn procedure on his own. Procedure is standardized. Every
s:SHEntcpilot is required to perform the maneuver according to a specific
procedure (or, at least, accnrding to one of a usually very small _number
of acceptable procedures). But whatever else procedure may be or ‘what~
N ever form it may take, this attribute remains invariate: procedure is an

»

P - ' ordered list of instructions or rules.2 A
Elementary and secondary school pupils must learn an enormous number -
. of procedures. Consider the fifth grader as he learns to add fractions.
7 He is taught to-use the flow chart in Figure 1. .

. His first problem is 1/3 + 1/3. He follows the path a A B: Yes,
¥ the denominators are the same (a). The sum of the pumerators is 2 (A).
" This sum iszplaced over the common denpﬁinator, 3 (B) The result 1is

4

~»

2The invariants of rules include the following: the§ are (1)
directed to someone and (2) specify with varying degrees of precision how
. a certain process is to be carried out.

N / 10 .

:

¢ . .

L N)

“Yes - I . No ' "

Y Al ’

-h: Is oné denomi- *

‘ra . ‘nator a multiple _ :
' - gf the other? .- . ’
. . ~Yes | I No *

Y B
: \ ¢: Are the denomi-
C: Factor largér denomi- mators mj}tiples

nator into two factors of a common factor

with smaller denomi- other than 1?

nator as one factor. . ’ . £y . A

Yes No
/) e | ’

H:, Form common denomi-
nator by multiplying
the two individual
denominators.

D: Multiply the numera-
tor and denominator
of the other fraction
by this factor.

- 5

) : JF:

I: Multiply each nume;
rator by denominator

Form the common denomi-
nator by multipying :

. the common factor by of other fraction. -
the two unique factors. " R
) I - A
G: Multiply each numékra- S

tor by unique factor
of the denominator of
the other fraction.

i

A: Add numerators.

B: Write sum over com-
mon denominator.

Figure 1. Algorithm_for Adding Fractions

>t

-

«

2/3. Check it for yourself by following path a A B. Several days later
he has advanced to a much more difficult problem: 3/16 + 2/3. He
follows the path a bc HI A B, Follow the flow chart: (a) the denomi-
nators 3 and 16 are not identical; (b) 16 is not a multiple of 3; (c) 3

“and 16 are not multiples of a common factor other than 1; (H) the common

denominator is 48 (the product of 16 and 3); (I) 3 x 3 =9 and 2 x 16 =
32; (AY 9 + 32 41; (B) 41/48. .

What do the student pilot and the fifth grader have in common? Both
are following a procedure. The procedure which the £ifth grader uses is
an algorithm—-represented by means of a flow chart. At this point we
want to establish only one point: the type of procedure describing how
to add fractions is an algorithm. All algorithms are‘a subset of the set

procedure. Every algorithm is an ordered list of instructions or rules,
but not.every list of instructions or rules is an algorithm, 3

- .

The procedure for executing the Vertical S~A is not an algorithm;
the procedure for adding two fractions is. Why do we make this distinc-~
tion? Because the procedure for adding fractions possesgses three
attributes—-attributes which every algorithm must possess—but the prcce-
dure for flying the Vertical S-A does not. Let us discuss each of these
attributes in detail.

The Three Attributes

Attribute 1. Look at the procedure for adding fractions. What
problems can be solved'by means of this procedure? 1Is it possible to use
the-algorithm for any examples other than 1/3 + 1/3 and 3/16 + 2/3?
Obviously, yes! It is this characteristic which constitutes the first
defining-attribute of an algorithm: an algorithm must possess genera-
lity; it must be applicable to a class of problems, not merely to a
single problem,

The procedure for executing a Vertical S-A does possess generality,
but the class of problems to which it is applictable is quite restricted.
The procedure cannot be applied to any Vertical S-—A maneuver, but can be
applié&d only to Vertical S~A maneuvers in which airspeed “is 160 KIAS and
altitude range is 1000 feet. The procedure, as definted by the seven
elendents on p. 3, is not generalizable to Vertical S~A maneuvers which

'involve an airspeed other than 160 KIAS or an altitude range qther than

1000 feet.
- 1]

Generall§ speaking, the literature on algorithms includes‘EEherality
as one of the defining attributes of the concept; sometimes this attri-
bute is mentioned quite explicitly, sometimes only implicitly. Writers
who use the term algorithm with precision are referring to a procedure
which may be applied to any problem of a certain clags. Trakhtenbrodt
(1963) defines the term thus: ¥By an algorithm meant a 1ist of
instructions specifying a sequegce of operations’ which will give the
answer td any problem of a given type [italics added]." Markov (1961) is
more general and defines an algorithm as "an exact prescription defining
a computational process that leads from various initial deta [italics
added] to a described result." Even thbugh these formulations are

-

inadequate as definitions, they do convey the concept of a general proce~

dure for the solution of any problem of a class of problems. Knuth (1968)

describes the generality characteristic implicitly when he states that
: the inputs for an algorithm must be members of a specified set. Landa
t (1974) wses a definition which includes the attribute generality:
:

2
By algorithm is<ysutlly meant a precise, g.nerally compre-
hensible prescription for carrying out a defined (in each
particular case) sequence of- elementary operations (from

some system of such dperations) in order to solve any prob-
lems belonging to a certain class (or type). (p. I1)

Bellman, Cooke, and Lockett (1970) agree: ™. . . an algorithm . . .
must lead to a solution of 'any problem of a given kind,' rather than to
one particular problem only" (p. 57). Trakhtenbrodt (1963) uses the
lable "'generality". as follows:

The generality of algorithms

<

An algorithm is a single list of instru¢tions defining
a cglculation which may be carried out on any initial data
and which in each case gives the correct result. In other
words, an algorithm tells how to solve not just one particu-
ldr problem, but a whole class of similar problems. (p. 7)

Horabin and Lewis (1974) have shown that the generality of an algo-
rithm is not dependent on the nature of the subject matter dealt with.
There are explicated natural laws in such fields as mechanics, elec~
tronics, thermodynamics, or logic. Certain courses deal with the teach-
ing of rules for dealing with systems based on explicated natural laws.
Such rules presented in algorithmic form are called grounded rules and
X , the algorithms are called grounded algorithms. In contrast, agreemental
> rules (Horabin and Lewis, 1974) deal with such matters as tax codes,

rules for games and sports, izsurance claims, or loan applications. An
algorithm for completing a tax form, for example, is not based on any
natural rule but on rules formulated by agreement; such an algorithm is
-called an agreemental algorithm.

s A S bt

. , = The algorithm for adding fractions is grounded. It is based on
- natural rules for manipulating symbols (in this case, numeric symbols).
The rules for adding fractions are not a matter of agreement from time to
time; they are "changeless," external, inherent in the arithmetic system.
s 7 -
. It is less important to discriminate between graunded and agree-
nental algorithws_ than it is to remembef that each type must possess
generality if it 18 a true algorithm. An algorithm for completing Tax
Form 1040 is agreemental; an algorithm for computing the rate of descent
- —of falling bodies'is—grounded. However, the former 15 an algorithm only
/1f it enables the user to complete the forms correctly for the many dif-
ferent instances of income, deductions and tax liabilities which charac-
“¢//terize the population for Zhich Form 1040 is appropriate. Likewise, the
rate~of-falling~bodies algbrithm is an algorithm orly if it is applicable
to each and every instance of a class of falling-body problems.

13

14
»
¥

o

Attribute 2. Look again at the procedure for adding fractions (p. 4).
Each step in the procedure is unambiguous, each step fully specifies the
action to he taken. Every user who is able co perform each of the steps
specified in the procedure will perform these steps in a uniform manner.
This characteristic of the procedure for adding fractions brings us to
the second defining attribute of an algorithm: an algorithm must possess
replicability; it must specify an unambiguous procedure.

The procedure for executing a Vertical S-A does not possess replica-
bility; some of the steps in the procedure are not unambiguous. For
example, it is quite unlikely that every pilot who has the necessary
entry skills will perform the first step in the procedure ("apply power
at a smooth, slow,and steady rate") in the same manner.

Landa (1974), in hiéAsection on the definition ofxalgorithms, uses
the term specificity in a manner similar to the way we use the term re-
plicability. He says: .

This property specificityjresides in the requirement that the
prescriptive directions in algorithms must be strictly defined.
Directive instructions mist indicate precisely the nature and
conditions of each action, exclude chance components in the
choice of actions, be uniformly interpretable, and be unambi-
guous. Thus, they must refer to sufficiently elementary opera-
tions for an addressed system--person or a machine-~to carry
them out unequivocally.

The specificity. of an algorithm is expressed in the fact that
problem solving by algorithm is a strictly directed process,

v completely guided and not admitting of any arbitrariness.
This is a grocess which can be repeated by any persen (or ma-
chine, if the algorithm is programmed into it) and will leud
to identical results, if the two data sets are identicai. -
(p. 17)

Trakhtenbrodt (1963) also discusses replicability, although he does
not use that term: "An algorithm must be given in the form of a finite
ligt of instructions giving the exact procedure to be followed at each
step of the calculation." Bellman et al. (1970) also indicate that an
algorithm must possess replicability. They state that an algorithm
"specifies the exact procedure to be followed at each step."

"Attribute 3. Consider the procedure for adding fractions once more
{p. 4). No matter how many times a user with the necessary entry skills
performs the procedure to find the gum of two fractions, he will always
obtain the correct result. This characteristic of the procedure for
adding fractions leads us to the third defining attributeé of an algorithm:
an~algo§ithm~mustvpossessbxeaultiyitzlﬁit must always lead to a correct

result.

(305 course, when a user performs any procedure, algorithmic or other-
wise, there is a chance that he will commit an error. However, in order

14

The literatue on algorithms is more consistent with respect to re-
sultivity than it is with respect to any other attribute. The writers
whom we have read either state or imply that an algorithm must possess
the attribute resultivity. Trakhtenbrodt (1963) refers to a sequence of
operations which will give the answer to any problem of a class. Markov
(1961) states that an algorithm must lead te a described result. Knuth
(1968) iists as one of five characteristics of an algorithm the require-
ment that it produce the correct result. Bellman et al, (1970) imply the
same when they assert that an algorithm must lead to a solution of any
problem of a given kind.)

Since the term resultivity appeared first in the English translation
of Landa (1974), and since Landa's definition does have a minor weakness,
we ought to examine it carefully. He says:

Resultivity. This property it reflected in the fact that an
algorithm always converges on a specific sought-for result,
which is always obtained in the presence of the appropriate
data set. This property of an algorithm, however, does not
assume that algorithms result in the obtaining of the desired
result with all data sets belonging to the defined class.

It is possible that the algorithm will be inapplicable to
certaim sets of data; and, in that cdse, the process of
carrying-out the algorithm will either halt suddenly, or it
will never end. (p. 18) .

The weakness of this explanation lies in the warning that this property
does not always apply, i.e., that it depends on the data set to be pro-
cessed. This particular difficulty could be resolved by specifying that
sets of data which are unsolvable by an algorithm do not belong to the
"defined class' or, conversely, that the class must be defined so that
the algorithm is applicable to all members of the ¢lass. Thus, resulti-
vity becomes a property which is as unconditional as generality or repli-
cability.

for a procedure to be considered an algorithm, errors must be attribu-
table to the user and/hr factors in the user's environment, rather than
to the algorithm itself. For example, if a us2r made a computational
error while performing the procedure for adding fractions. this error
could te attributed to the user and the procedure would still be consi-

; dered an algorithm. Such errors are called ambient errors; they are a

F function of human vagaries; they wander in and out, unpredictably. How-
| ever,. if one of the steps in the procedure for adding fractions were

{ revised, and this revision led users to add fractions incorrectly, then
— the errors could be attributed to the procedure and the procedure would
not ve considered an algorithm. Errors of this type are systematic. T1f
we can do so without provoking an argument on the subject of determinism,
we would like to state that systematic errors can be predicted and con-
trolled. . '

A Traditional Definition

We have now described the three attrihutes that a procedure must
possess in order for the procedure to be considered an algorithm. When
these three attributes are combined into one statement, the following
tentative definition of an algorithm emerges: an algorithm is an unambi-
guous procedure which will always produce the correct result when applied
to any problem of a given class of problems. In other words, an algo-
rithm is a procedure which possesses replicability, resultivity, and
generality. The Venn diagram, below, represents this relationship be-
tween the set 'procedures" and the subset "algorithms;" the shaded area
represents those procedures which are algorithms.

Procedures

Replicalfl

Resultivity

Thg Relationship Between Resultivity and Replicability

While algorithms have traditionally been defined in terms of the
three attributes discussed, algorithms can be defined more simply. Let
us examine the procedure for executing a Vertical S-A again. We have
already stated that this procedure does possess generality, but not repli-
cability. Neither does it possess resultivity, since not every pilot who
has the necessary entry skills will perform the Vertical S-A correctly by
following the specifigd procedure. The unlikelihood of this occurrence
appears to be attributable to the ambiguous nature of some of the steps
in the procedure for executing the Vertical S-A. If this is true, we
can assert that the procedure for executing the Vertical S-A is not re-
sultive because it is not replicable.

Upon fu;ther examwination, one can say that any procedure which is
not replicable will not be resultive. That is, if a procedure is not
specified in such a way that it will be performed uniformly by all those
users who have the necessary entry skills, then it is likely that the
lack of uniform performance will, in some instances, lead to the attain-
ment of an incorrect result. Conversely, in order for a.procedure to
always lead to a correct result, that procedure must be unambiguous. In
one should not assume that resultivity and replicability are synonymous.
An incorrect procedure may consistently produce a single incorrect re-
sult. Thus, an incorrect procedure can be replicable, although it cer-
tainly would not be resultive. In summary, all resultive procedures are

16

(
[-~ __ _other words, if a procedure is resultive, it must be replicable. However,
\
l

(49

T Y

10

replicable, but all replicable procedures are not resultive; in other
words, resultivity is a proper gubset of replicability. A revised ver-
sion of our Venn diagram, based on the relationship hetween resultivity
and replicability, is pregented below; the shaded area represents proce-
dures which are algorithms.

TR

Procedures

A Revised Definition,

The Venn diagram shows us clearly that algorithms can be defined as
those procedures which possess resultivity and generality. In other
words, an algorithm is a procedure which will produce the correct result
when applied to any problém of a given class of problems. It is not nec-
essary to spécify that an algorithm must possess replicability (be
unamb iguous) because, as we have pointed out, resultivity imples repli-~
cability. .

This definition is a significant departure from those presented in
the literature as discussed above. It is particularly significant that
Landa (1974), who l1lists generality, resultivity, and specificity as
essential attributes, actually uses the term specifity (which ‘is synony-
mous with replicability) in much the same manner that we do. To put it
negatively, we cannot find any instance in which Landa uses the term
resultivity except with the implication that it is a subset of replica-
bility. Thus, our perception of the literature as well as our own .
analysis of the concept have led us to the conclusion that replicability
is unnecessarv and should be excludéd from the 1ist of defining attri-
butes. The law of parsimony is sufficient grounds, in our estimation,
for .reducing the list of defining attributes to two: generality and

. resultivity.

We émphasize, however, that this simplification is done on purely
logical grounds. ' As yet, we have no evidence on which to base an asser-
tion that there is a pragmatic advantage in eliminating replicabiTity
from the definition. Perhaps the simpler definition will facilitate the
empirical classification of procedures as either algorithms or nonalgo-
rithms. Determining, on an empirical basis, the unambiguity of a proce-
dure appears to be a formidable task. Our revised definition of

algorithms should eIiminate the need to conduct such a task.

ltw"
[

11

¢

The Prohlem Clags, the Result Class, and the User Class

Before proceding to a formal analysis of the elements of an .algo-
rithm, we want to translate the abstractions of our definftion into some
relatively concrete referents. We shall do this by considering three
descriptors which will always be included in any algorithm presented in
subsequent sections.

. Domain. We have established that an algorithm must possess genera-
lity; it is a procedure which is applicable to any problem of a class.
The domain of the algorithm (Bung, 1971) is the entire class of problems
for which it will work. In order to establish the generality of any
algorithm, the domain must be clearly and explicitly stated.

Look at the fraction adding algorithm once again (p. 4). This
algorithm is not for use with problems which consist of three or more
addends. Instead, this algorithm should be applied only to sets of two
fractions expressed in the conventional numerator over denominator form.
It could be restricted to fractions whose terms are natural numbers, but
this is not necessary; the algorithm will yield a solution to problems
in which one, or several, or all of the terms are literal numbers. You
can demonstrate this to yourself by using the algorithm to add a/x + bly,
thus:

A: = ay + bx
’ B a,z + bx "
Xy 1y

The ¢lass of problems, then, to which. this algorithm applies is "any

‘set of two fractions expressed in numerator over denominator form." That

is the domain of the algorithm. The domain of any algorithm should

‘always be explicitly stated.

Range. The application of an algorithm always leads to a specific
correct result which is a member of a set of possible correct results or
outputs. This set of possible correct results is called the range of an
algorithm (Bung, 1971). In order to establish the resultivity of any
algorithm, the range must be clearly and explicitly stated.

In the fraction addition algorithm, the only possible correct
answers are numbers which represent sums. The difference between, the
product of, or the quotient of two fractions simply will not do. The
algorithm must yield a sum. Furthermore, algorithm will yield a sum
only when applied to a pair of fractions; it 13 not for use with whole

_numbers, with exponents, with decimals. The range, then, is "the sum of

any set of two fractions within the domain." As is the case with the
domain, the range should always be presented, irrespective of the form

+ in which the algorithm appears.

»
i

. 18

2 ¢

]

12 |

User. Every algoritim is applicable to a system. The system may - 1
be a human, as in the case of a fifth grader learning to add fractionms, -

or the system may be a machine, as in the case of a key punch being con-

trolled by an algorithm punched into a drum card. In any event, th-

uger (the system for which the algorithm is intended) must possess the .
capability of using the algorithm.

Theoretically, it could be argued that every algorithm must be re- '
presented in a language which can be "understcod" by any user and that .
811 formulations in that language are completely unambiguous for any user.

Practically, however, it is probably impossible to find or to construct
* such a language; it is equally impossible to generate formulations whiah
are completely unambiguous for an unlimited range of users.

Let us elaborate this last point briefly: The fraction algorithm
possesses generality and resultivity for a fifth grader as well as for a
Ph.D. in mathematics. If the latter had forgotten how to add two common '
fractions, he ‘ould find their sum by applying the algorithm to the pair.
This algorithm could also be represented by the use of abstract algebraic
- “symbols. If it were, it would still be exactly the same algorithm. How-
' * ever, a fifth grader would be unable to use it.

Because of the variability of potential users of an algorithm, it
is essential that a match be found between the algorithm and the users
for whom it is intended. The kinds of users for which a given procedure
is an algorithm must be specified. In the rase of the fraction addition
algorithm, the user must have the ability to factor whole numbers. Any-
one who has mastered this skill (which, too, may be described by an
algorithm) is ‘assumed to6 haye the ability to add and multiply whole num-) v
bers. 1If one cannot make ‘this latter assumption, then either it must be
stated explicitly or the algorithm must be revised in one of two ways:
the user must be shown how to add and multiply whole numbers or a method
of adding fractions must be devised which is independent of the user's
ability to add and multiply. Theoretically (certainly not. practically!)
the latter might be accomplished by meansg of several tables.

We want to avoid the problem of an infinite regress when we decide
on the starting point for an algorithm. No matter what the first step
in an algorithm may be, there is always.something antecedent which the
user must know or be able to do. The same could be said of that antece-
dent, and so on, and so on, ad infinitum~-or at least until one arrives
(after several lifetimes of analysis) at that pristine elemental bit of
information which is the genesis of everything and anything. Arbitrarily
specifying an antecedent knowledge or skill as a starting point, there-
fore, is a simple means of avoiding the infinite regress.

An algoritbm, then, is not complete until an explicit statement of
user entry skills is included. We have adopted the convention of
listing the skill(g) under the heading entry skills. The statement of
entry skills must answer the question, "What must the user know or be
able to do in order to use this algorithm?"

One might argue that this descriptor, which is nothing more than
the instantialization of the replicability attribute, is either the most

Q ‘ | 19 .)

L 4

13 -

important attribute, or at leaat equal in importance to generality and
resultivity. We readily grant this point. However, since no algorithm
can possess replicability if it lacks resultivity, there is no need to
insist on the traditional three-part definition. Romember, the user does
not define the algorithm; rather, the algorithm defines the user.
\ :)
Summary. Every algorithm must be applicable to a class of problems
as opposed to a single problem. The class of problems is defined under
the domain descriptor. Every algorithm must yield a specific sought-for
result which is a member of a set of results. The.set of results is
defined under the range descriptor. Finally, the user's prerequisite
knowledge or skill is specified under the entry skill descriptor.

-

ITI. The Elements of An Algorithms

Introduction

This is the classic Euclidean algorithm:

Domain:
Range:

Entry skill:

Any set of two natural numbers
The greatest common divisor for any set of the domain

Factor natural numbers

Convert both numbers
into products of
prime factors

.

Find the smallest
factor of the first
product

Is that same factor
among the factors of
the second product?

Mark it down

E:

Strike one occur-
rence of this factor
from each product

Strike this factor
from the first product

b:

Is there a factor
left in the first
product?

The product of all
factors you have
marked down is the

greatest common
divisor.

16

The purpose of the Euclidean algorithm is to find the greatest common
divisor of two real numbers. For illustration, let us apply the algo-
rithm by using 8 and 12,
A: 8=2x2x2 . .

12= 2x2x 3

B: 2
’ a: Yes'
c: 2) ‘
D: 8=20x2x2
12=$x2x3 ,]
b: Yes
B: 2 -
a: Yés)
¢ c: 2

D: 8=Pxtx2 ’ ‘ -

12=%x2x3 . . -
b: Yes
B: 2 ‘
a: No !
E: 8=pPxpxp
b: ‘No \ ' K

3
v

F: 2x2=4 (i.e., CxC=2x2)

Exactly the same results will be obtained if the algorithm in
N Figure 2 is used. Use the same two numbers, 8 and 12, to test the algo-
= rithm. ' :

a: Yes, 8< 12
A: 12 - 8 = 4 (4 becomes the new second number)

a: No (8 is not smaller than 4)

b: No, 8 ¢ * . S

-

Domain:

|

Range:

Entry skill:

Any set of two natural numbers
. N .) a 7
The greatest common diVvisor for any set .of’ the domain

Subtract natural -numbers ~

3a:‘ I8 the first number

the

A: Subtract the first
- ~“number from-the R
gsecond and regard

as the second number

smaller than the ~
second number?

RN
'
+ - l »

?

<3

result"hereafter . A~

v

b: Are the two

3 . numbers equal?
+ ‘ £ l - bl
C: Either of the two B: Subtract the second
numbers is the number from the first
desired greatest and regard the result
common divisor " hereafter as the

first number

~

Figure 2, Euclidean Algorithm (Version 2)

»

23

+ -
‘ L 2
B: The last divisor C: Let the remainder be
: , is the greatest the smaller number -
s common divisor ' V! . and the divisor be—\

a: No
b: Yes? 4 = 4

Cr 4 is the greatest common divisor

”

This is Shipley's alternative to the Euclidean algorithm:4

~

Domain: Any set of two natural numbers
Range: The greatest common divisor for any set of the domain
i Entry skill: Divide whole numbers

) A: Divide the smaller

. N ,number into the larger ¢
and find the whole
nunmber remainder

a: I§\the remainder 07

the larger number

. 3 . o C : l]

’

Again, find ‘the greatest common divisor of 8 and 12.

o A 12 + 8=1,R 4
a: No
C: Smaller number is 4, larger is 8 p

A: 8+ 4 =2, R0 (no remainder)
a: Yes

£ B: 4 is Lhe greatest common divisor -

% pdapted from unpublished materials developed by Brian Shipley.

-

24

hr

19

Operator. 1In each of the three algorithms there are statements
which tell you to perform an operation. Statements of this type are
called operators and arxe labeled with upper case letters in our illustra-
‘tions. Examples of operators include: -

B: Find the smallest factor of the first product.

B: Subtract the second number from the first and regard the
. result hereafter as the first number.

C: Let the remainder be the 'smaller number and the divisor be .
- the larger number. -

The definition of an operator, then, is the type of element in an algo-
rithm which tells the user to perform an operation.

The exit point of the algorithm may not appear to be an operator:

* F: The product of all factors you have marked down is the
greatest common divisor.

- >

C: Either of the two numbers is the desired greatest common
divisor.

B: The last divisor is the greatest common divisor.

At first glance, these statements do not appear to tell the user to per;

form an operation. Imagine, however, that these.operators were changed
ever so slightly: R

F: 'Write down the product of all the factors you have marked
down; it is the greatest common divisor.

. o,
C: Write down either; it is the greatest common divisor.

B: Write down the last divisor; it is the greatest common
divisor.

In this augmented form, the statements are obviously operators.

Discriminator. The second type of statement found in each algo-
rithm is that which requires the user to make a'decision. Statements of
this type are called discriminators and are labeled with lower case
letters in our illustrations. Examples of discriminators include:

b: 1Is there a factor left in th; first product?
a: Is the first number smaller than the second?
a: Is the reﬁainder 0? .
This is the definition of a discriminator: an element of an algsrithm

which requires the user to discriminate between two possible conditions
or between the presence or absence of a specified condition.
- . > ” y

T A\

J) 20 é

' . D

Syntactic structure. The operators and discriminators of an‘gigo—
rithm are related to each other. In the three examples for finding the
greategt common div¥isor, these relatiouships are represented by means of
the lines and arrows as well as by the pius and minus signs. If the
algorithms had been represented by some means other than a flow chart,
these relationships, might have been represented by such statements as

“%If .. ., then . . .", and "Go to . . .", to mention only the obvious.,
Regardless of the form, the structure of an algorithm which relates the
operators and diseriminators is called tHe syntactic structure.

L3

+ Syntactic structure is egsentially the-same concept as Frank's5
(1969) macrostructure. The notion of a syntactié structure is not pecu-
liar to algorithmg. For example, in automata theory this structure (or
function) is referred to as the "“transformation function" (Glushkow,
"1963) . »

, Summary. All algorithms possess operators, discriminators, and a
syntactical structure. Operators tell the user of an algorithm to per-
form an operation. Discriminators require the user po discriminate
2between two possible conditions or between the presé;
specified condition. The syntactic structure of an algorithm relates
the operators and discriminators.

- %

5Frank defines an algorithm as a triple

4 : /\v)y,@} ’

<

where:

represents the set of discriminable attributes or reactions of the
object to be controlled.

;l represents the set of operations to be perférmgd on this object.

/4 .
represents the macrostructural function of the algorithm, i.e., the
@ function which assigns an element of /] to each element of y .

6 procedural algorithm may lack any discriminators. For example:
"A: ,Turn on the switch. B: Move the clutch lever from "neutral to
“operate" is a procedural algorithm which lacks any explicit discrimi-
nators. This paper does not deal with procedural algorithms, since they
have extremely limited applicability to learning and instruction.

-

nce or absence of a*

1

-t ’ Entry skill:

.IV. The Representatfon of Algorithms

Nearly any algorithm may be represented in a variety of forms which
are equivalent in terms of such variables as operators, discriminatogs,
domain of inputs, range of outputs, and required entry skills. The var-

. ious representational forms differ widely in terms of readability,
structural clarity, effort required to produce copy, and space required
for publication. The familiar flow chart is usually the clearest and
most readable form; unfortunately, it is also the most difficult and time
consuming to produce. Other forms of representation include standard
prose, coded graphs, linear notational systems, lists, and decision
tables. In the gpllowing pages an algorithm which we refer to as the
"Bird algorithm"® is shown in each of these’forms.

Standard prose. First, this algorithm is represented in ordinary-
discursive text. The range is 'Leaving; feeding and wateringgf taking to
- a veterinarian; burying;" the domain is "Any instance of a person find-
ing a bird lying on the ground;" the entry skill is "Recognizes birds;
. knows what a veterinarian is." This is the algorithm: 'You find a bird
. lying on the ground. Check if he 1s still alive. If he ig dead, leave
him where he is. If he is alive, give 50 ml. of water, and 30 g. of
birdseed per day. If he gets better, let him fly. If he doesn't get \
better and is still alive, take him to a yeterinarian and follow his in-
structions. ,If he dies, bury him." Note that the complete algorithm
< must be read if Jou want to know what to do with the bird. This may not
’ gg;very.taxing in this particular case, since this algorithm is rela-
tively -short and ccncise/ ’

.

However, the reading of the complete algorithm is a formidable task
in the following: i T
. Domaén: Price, transaction expenses, and date of purchase of
. shares of stock; market valuye on 6 April 1965,

.= Range: Base for tax allowagnce or charge.
7th grade' reading ability.

. If the asset, consists of stocks or shares which have

AN
values quoted on a stock exchange (see also paragraph 6 be;ow),
A Vg .or unit trust units whose values are regularly qudted, the

- . amount of tax chargeable or allowable depends upon the relative
sizes of the cost price of the asset, its market value on
6 April 1965, and the selling price of the asuet. ’

If the selling price is greater, than the market value,
and the market value is greater than the cost price, tax is
pﬁarged on the selling price less the market value (less

a allowable expenses). -If the selling price is greater than
’ the market value, and the market value is less than -"the
cost pride, two possibilities arise. Either the selling
o price is greater than the cost price, in which case tax is

A
)

»> . : R . -\ ‘.

[N

7Adapted from unpublished materialggdeveIOped by Klaus Bung.

;’., ‘ ‘ .) ‘2‘;’
4

,charged on selling price 1ess ‘the cost price (less expenses).
Or the selling price is less than the cost price, in which
case no tax is-‘either charged or allowed.

If the a_elling price “is lesgs than -the market value, and
the market value is less than the cost price, tax is allowed

Ca on the market value less the selling price (plus allowable

" expenses). If the selling price is less than the. market
value, and the market value is greater than the cost price,
two possibilities arise. Either the selling price is less

* than She cost price, in which case tax is-.allowed on the cost
price less the selling price (plus expenses). Or the gelling
price is greater than the cost price, in which case no tax is

- either allowed or charged. (Horabin and Lewis, 1974, p. 6)

Even though, the version of the tax regulation you have just read is
formidable, it is much clearer than the original; nevertheless, it is
still difficult to read and even more difficult to apply. The prime

* reason for the difficulty is that the user is forced to read more than
necessary. Assume that the user is computing the tax for one particular
instance. °Only a few of the many conditions given in the algorithm are
applicable to this particular case. Despite this, the user must read

everything, trying to discard the irrelevant and remember (or apply) the

relevant as he goes along.

) Flow charts. 'l'his is the standard form used in the previous sec-

...tions* its advantages in terms of readability and structural clarity are
obvious. . -

Domain: Any instance .0f a person finding a bird lying on the
’ ground.
- Range: * Leaving; feeding and watering, taking to a veterinarian;
burying.

\Entry, skill: Recognizes brrds, knows what a veterinarian is. :

.]

A" You find a ‘b,ird
lying on the ground.

& at Is the bird still
+ alive? i -

B: Offer hi¥ 50 ml. of . Ce :.ea% ‘him.
water, and 30 g. of
birdseed'per day.

z

T b: Has his condition
% improvedi _
D¢ Let him fly. + c: Is he:alive? -
) v
"E: Take himvto a veteri- F: Bury him.
* narian and follow
* N his instructions, -
£ .

=
2

Domain{

Range:
Entry skill:

This is the flow chart form for the algorithm for the
tax given above in prose foxm (Horabin and Lewis, 1974, p. 8):

capital gains

-

Price, transaction expenses, and date of purchase of

shares of stock; market value on 6 April 1965.

Base for tax allowance o1 charge.
7th grade reading ability.

.

2
2

|

Is selling price
greater than
market value?

YES

NO

H:

Is market value
greater than
cost price?

YES MNO .

Is selling price
greater than
cost price?

Is market value
greater than
cost.price?

YES NNO

Is selling price
greater than
cost price?

r

YES 0 YE NO
| -

Tax charged Tax charged No tax Tax allowed Tax allowed
on selling on selling /[either on cost price on market
price less the] price less theJ $harged or] ;ess the value less the
market value cost price, allowed. selling. pricej lselling price,
less expenses. ess expenses. plus expenses} lplus expenses,

'ggded graphs.

o

Bung makes a distinction between plain prose graphs

such as the one above or coded prose graphs such as the flow chart of

the Bird algorithm (see p. 24).

Ih the latter, each operator is pre-

ceded by a capital letter and each discriminator is preceded by a lower
(These code letters can also be used to represent algo-

_case lettér.

-~

»

rithms in two other ways, as shown in the next section.)

h -~
20
.

= >

uﬁ_*_

P
«i—m(-“. —z‘kwﬁ + .
Y <

¥
| S '

3
F

Coded graphs must be accompanied by a key which associates the code let-
ters with the verbal statements of discriminators and operators. The

L key for the algorithm above 1is as follows:
& \\ , .
Discriminators) -
a: 1Is the bird still alive? 5 s

b: Has his condition improved? -
c: Ts he alive?

Operators

eof

A: You find a bird lying on the ground.
B: Offer him 50 ml. of water, and 30 g. of birdseed per day.
C:. Leave him.
D: Let him fly.'
. E: Take him to a veterinarian and follow his instructions.
4 F: Bury him. '

v ¢ -
Linear representation. Longer and more complex algorithms in the
g form of flow charts take up much space and the typing and drawing is
time consuming. These difficulties can be avoided by using a linear
form of representation employing arrows and code letters (Lyapunow,
1960) . Bung (1969) modified Lyapunow's system so it could be typed with
any normal typewriter without the use of arrows, Bung calls this system
BULL notation. Both the BULL notation and Lyapunow's system require the
use of a key. The Bird algorithm in BULL notation is as fullows:

Aa2B5b3D.3c4ES5y4F. 2C.

Bung provides the following reading instructions for this notational
system:

v

25

3

1
|
If the question associated with a discriminator is answered !
Yes, we call the discriminator positive; otherwise we call |
the discriminator negative. Operators are denoted by capital

letters and discriminators by small letters. The number

immediately on the right of a small 1etter is called 'source

number.' Any other number is called 'target number.' The '
left-most letter is understcod to incorporate the start

instruction. Read from left to right waless ctherwise in-

structed. After an operator or a positive discriminator,

read the nearest letter or full-stop on the right, ignoring

any numbers. After a negative discriminator, read the

source number adjacent on the right. Then read the identi-

cal target number. Then read the letter on the right of the

target number. Stop after having read a full-stop.)

Bung recommends that the lower case y never be used as a code letter for
a discriminator but only to indicate that the number preceding it is a
source number for a recursive loop. -

<

List form. The list foxm is frequently used to represent algo-
rithms for identifying things. Such algorithms are common in botany and
zoology; they are frequently called "keys." An example of a key to in-

sect families is the identification tree below: .
Domain: All 3nSeqts of ‘the order Hymenoptera
Range: Each family of the order Hymenoptera

Entry skill: Ability to identify parts of an insect, such as sheath,
femur, antennae, pronotum.

]

|

; .)

23 .2 .3 FREIC DS PR T
gigéi R R T

2% 3% £2 ¢ 4 ;_sé- E ZERizis 53

884 58 3358 333 ¥ :i3cks £ 3:383EE B oisd

b v
Pollen o
feeders
!
\) L/ \
Provisioning
/ \\\\ / Para]yzing / Yo ” ,
| e S -
) . \ parasites Femur Jused;
/(satennse 913,912
Primitive Rare of
\/Homwl' rasites sheath hidden
Sawflies ~——" Articulsted gaster; . .
parssites
Stem borers,
larva) Jegs reduced

The Bird algorithm can be represeuxed in list form:

A: You find a bird lying on the ground.
a: Check whether he is still alive. -
i 1f yes, go to B; 1if no, go to C. -
B: Offer him 50 wul. of water, and 30 g. of birdseed per day.
‘ Go to b.

b: Check whether his condition has improved.
If yes, go to D; if no, go to c.

C: Leave him.
D: Let him fly.

¢ Check whether he is still alive.
If yes, go td E; if no, go to F.
E: Take him to a veterinarian and follow his instructions.
) . . Go back to b.
i o * F: Bury him.

The first operator and discriminator, A and a, can be contracted into
one Instruction since the sequence operator-»discriminator is unequivo-
cal. This is not the case for operator B and discriminator b, Discri- K
minator b can also be reached via the recursive loop originating from \
operator E. The list; therefore, has to have separate items B and b in . =
that sequence.

The algorithm in list form.shown below (Landa, 1974), represents a
very simple algorithm for starting a type of machine.

1, Verify yhether the apparatus is plugged in. -
ke ' If yes, then proceed to instruction 3,
o - If not, then proceed to instruction 2.
P 2, Plug it in, ;
3. Flip the switch. >
. 4, See whether the red light has come on. -
- . If yes, then proceed to instruction 5. :)
) If not, then proceed to instruction 6.
5. Begin work. .
Call the technician.

o
[+,
3

3 Note that both this list form and the flow chart form offer advantages

3 over the plain prose form. The reader has to read only what is .relevant .
to his specific problem when he uses the 1list or flow chart forms of
rep;esentation. However, the flow chart form provides a graphic illu-
stration or a picture of the relationships among the elements of the

- algorithm; the 1:st form does not.

Decision table form. This form is not amenable to every type of
algorithm. Possibly only identification algorithms, such as the key o
_ P. 24, can be put into this form. If the algorithm includes transforma-
tions which must be observed over time, as is the case in the Bird algo-
] rithm, there is no way to list the intermediate operations. Davies
4 (1971,. p. Uﬁ) gives the example of decision table for an official regula-
" tion shown below:

o 32

27

Decision Table for the Death Grant Regulation

CONDITION STUB , CONDITIONS ENTRIES
Q1 Were the contributions paid late? } No Yes Yes Yes Yes Yes
Q2 Were the contributioms paid be-

fore the death of the subject of

_ the claim? , -- No Yes Yes Yes Yes
Q3. Is the insured person alive? ~- == No No ©No Yes
Q4 Were the contributions paid be-

fore the insured person died? -~ == No No Yes --

Q5 Have the contributions already
been taken into account for a
claim for a widow's or retire-

1

ment pension? ~— »==- No Yes == =—=
oo —— n y |
ACTION STUB ACTION ENTRIES
Death grant_ié payable, ’ . * * * *
Death ‘grant is NOT payable. * * :
| Rues W @ @ @ 6 6

(A dash in- the condition entry column indicates that either a yes or a
no ‘answer is acceptable. In other words, the answer tQ the question
does not affect the final outcome.)

Summary. An algorithm may be representeé in a variety of ways.
Some of the mcre common forms are flow chart, standard prose, coded
graph, linear-notational system, list, and decision table. Despite the
fact that flow charts require considerable production time and a great
deal of page space, they have advantages of cIérity and economy for the
user.

Lo

V. Taxonomies of Algorithms)

The algorithm in Figure 3 was constructed to enable zoology
students to identify the family to which examples of the ordet neuroptera
belong. Concider a very simple example. You've found an insect with two
pairs of clear wings having many veins and crossveins. It has chewing-
type mouth parts, long and multisegmented antennae, and large eyes.
You're quite certain that it is a member of the order neuroptera; you
want to identify the family to which it belongs.

. {

First, a disclaimer: If your hypothesis concerning the name of the
order is wrong, the algorithm simply won't function. Earlier it was
established that a true algorithm possesses the attribute generality; it~
will yield a correct result when used for any problem of a certain class.
In this case, the class of problems is "identifying the family to which
a given specimen of the order neuroptera belongs." ‘

Let's return to the task. The insect (a) has front legs with
apical segments slender, same as other legs; (b) it is a small ‘insect
with numerous veins and crossveins and it is covered with a waxy bloom;
(c) the front wings have a regular, fencelike series of 16 crosgsveins
(graduate veins), similar to those between R1 and R_ in Figure 285E; (d)
the antennae are long and slender, as in Figiure 284, tapering to an apex.

Look at the description, just given, and find each characteristic
in the algorithm. -Characteristic "a" 1s found in the first member (1)
of the algorithm. The critical portion of this statement (the discrimi-
nator) is the last part; this branch of the discriminator leads to the ,

- #2" . {Technically, the discriminator is, "Do the front legs have slender

apical segments?" The response yes leads the user to the operator, "Go
to 2.") : .

¢ - a

Use the second member of the algorithm to make he appropriate dis-
crimination concerning characteristic "b'" (small; numerous veins, cross-
veins; waxy). You go to 3. : .

Characteristic "c" (series of 16 crossveins) is processed by means
of the third element. The algorithm forces you to make the discrimina-

tion which leads you to 4.

Characteristic "d" (long, slender antennae) meets the requirement
of the first discriminator in the fourth element. Thig is an exit point.
You've used the algorithm to complete your task. The result is that you
correctly identify the family chrysopidae as the one to which the speci-
men belongs.) .

This type algorithm is an identification algorithm, one used to
identify an object as belonging to a certain class of objects, events,
symbols, or characteristics. The object must be a member of the class
(ot set) of inputs for which a given algorithm is intended (See "Domain,"
Section II, above). In the example above, it was pointed out that the
algorithm would function only if the specimen was indeed a member of the
order neuroptera. - ‘

2

34

30

.

£30101g uTt WY3ITI08IY

UoTIBOTITIUSPI ue jJo afdwexy ‘¢ aindig

Uﬂeu-&‘ww bR 2 ewmma w 1 = wraaws § -a
‘Wit ua peveg *xade Jxjoq AP Suxa pany Ty pus O Yam <Jumm Juosg
sepriegy
yo¥z 3y "1waed (g) 1maa pereq txude Apa] Pay 10U By PUR 2y s .u.._b woig g
avprysoloy

4482 uc ‘uA I5IX0 JUI1INTI3S OU Hiwm puy PR h:.vum.n.: vM:.cs war g

.

(sounae
Swriea usitg) aaa diepead 2 fuaa 1907y sepnrnpasitlivg opysrndg ‘g Torpumlag
nluina) o ‘wprdinkingy ‘Wil °g frepinpssie) tnsgassey) fg Saeppibag ‘roreyd
“ecprkronbunny yvpraay y Csepumiq) Seig ey Y s1andesnay Jesdusmiuery ¢az 1y

wpucproniiog 2

DU U [rimas DL Yitm purt ey KBt o Fupm jualg g
s AR D0 auz 33 @ x ‘popunas
Ajusas udieus eade jim pue paysog MR |80 U 30 Mg Witm sButm worg
"I 24582 ¥y poyny SIS {ERLD [T Punufe (itm sButm quurg g
unv o TOAUE F o Ty ermavdas w amon; Funtak Ty ju sapue g e s sTuis juosy

...................

{imsmsiaus, oy gy “Haamee 1Y 1O spomn} umnts ' 0y} e wrlieg sopergaBucds 9
Jo wag) D adiyy Tngmom ¥ o esseg pue i Yty clatomeyd jag 2y

b
.
. . \h M e kg

e prqoisu

aoRz '3y *y pus 1y poeny wog Sukiie °y 10 ExpUERY 330Ul 10 TPwmtum wosg 9
tepiydeprasy AR . xade 1o payqouy Buog ammtauy
rpuoIH L}y e apurmor pridynyy Afieapead oys seuusiuy <
[x2dw 1w paqoy 20 1¥Ae)) pur BoYs PGS Sruudluy
sepudosy:y wadvos Juuxdn 'hgz 3y Sapuars pue Juog suudiuy 4y
] . : WAL 39 Py o Jo usis pue 1y 20°9 49z By

“y pur By uadming SURAWOD parcied-pam o) A[uo P sgind o Juusg
| . 25Uz Byt puw by wxmin
(R334 21epread) MEIAII0IN 2900 30 7§ 30 224536 A2y rendas € qraw Susw yuorg g
n e - A ww - er ce xn 51‘»’)‘&’§v
BASU $30ut DI D-DEE, Ty WOIUMU UBATIS pus 18 yrm Surgy
3 lapdojuony e Tt ouenadde iy La13 puw woctq Aves
' {ILmPAIIA0D LR SINUIY Y42 Ty MAIMDO0 20 A mag Aise ita Bapn 2
z (77 nclrgis.@?%ag_g.ffen{i
seprbnueiy * 99z 3y Bunhesd aop palre(ua QuawBic jexd qua sBaf um ag g
SININVE OL Zx '
)

Rredyinous 3jeinqipurur pre speay
. pot
pedopaaap-jlam ‘wue jeuiwopqe ou Ing S83(dorI0Y) dary ware] ¥
Iy s33uods 1orem-ysay o1 pagy avase oty pue Suenbe 5 (epuksey)
Ajpusyg auo tsnosoepaud pue fesans) are way) jo WO .PIEA 1% Jeareq
ML VW Iy ‘B4o otrep pue pavulanmnw pue Juog
‘sredyinow >d4) Juwmoyd qivm Susinon phe sua Auvw Juney sSum
Ae3)3 jo suted om1 qim Ljjensn ‘nassur afee] o) Anuur ore nnpe 2y

spihueiy “Sumaoe] . yy3 LIOUNAN 2910

“sw121doanay iopio) jo s3dasul dzyuBod21 03 KIFjiqe
¢#3ula ‘ovuvudlur ‘suysa :3dasuy uw 3o syaud A373uvpy o3 K11yqy

TP Kajuy

“®101d0andY 10p30 AN 30 Ajwuv} yseg s a8uny
"¥1v1d0aN3Y 3epa0 Y3 JO ¥IDASUT IV tujswoq
;e .
R
D T T T O P T S T T SV S P L T Sy A TN RV TR POy e

) } S

Q

- &
i

Aruitoxt provided by Eic:

E

2kl AR
A

31 .

The class of outcomes to ‘whi¢h an identification aigorithm leads
(see "Resultivity," p. 7) is comprised of all the subsets which make up
the class—-in this case, all the families of the order. This concept,
of course, is termed "range" (see p. 11). .

|
. ‘The algorithm_gn‘p, 24 is ancother identification algorithm. Such ‘ ﬁ
algorithms are much used in botany, zoology, and geology.. \Frequently
they are called keys. Less obvious examples of this type of algorithm

are those which are used to determine the rulek, algorithms, or proce- x
dures applicable in a given case. Landa (1974), for example, presents - e
identification algorithms which permit the user to determine which. gram— . ‘4
matical rule he must apply. 'Thut, ‘the rule which détermines the manner % -

in which simple sentences are joined depends on the type of sentences. §;.¢

Figure 4 depicts an algorithm for the identification of simple sentences.
Similar .algorithms can be found ' mathematics or in trouble-shooting
manuals for wmechanical or electroric equipment and in other areas.

L3 »

Many of us at one time or another have been uncertain about how to
punctuate a possessive noun: where do we place the apostrophe, particu-
larly in plural nouns or in singular nouns ending in "s"? The algorithm.
in Figure 5 is designed to enable the user to transform nouns from the
nominative case ‘to the possessive. el Ry

We can test this algorithm by trying the following unpunctuated .. o
examples:)

1. The_gzts fur (i.e., the fur of éne cat) ‘ '

2, The goys locker room (i.e., the locker room of all the boys)
2. Johnsons goat (i.e., the coat belonging to Johnson)

4. The Smiths residence (i.e., the residence of all the members of
the Smith family)

The solution, in code form, for Example 1 is a b f B; for Example 2,
ab f C; for Example 3, a b ¢ d B; and for Example 4, a b c C.

This possessive form algorithm is a very simple transformation algo-
rithm, . It enahles the user to transform a noun from the nominative form
to the possessive form. The Euclidean algorithms in Section III, above,
are examples of~transformation algorithms. In theoretical terms, such
algorithms enable users to change members of the domain set (or a set of
inputs) into a membet\of the range set (or an output set).

An algorithm need not be purely identification or purely transfor-
mation. The fraction addition algorithm, shown in Figure 6, is a
mixture of the two types. Part of it (indicated by means of the heavy
lines) is an identification algorithm, it enables the user to identify
fractions. The remainder (indieated by means of the light lines) is a
transformation algorithm; it enables the user to transform two addends
into a single sum, :

Domain:
Range:

Entry skill:

L 4

-

The five types of simple éentences (in Russian)
Names of the five types: ~Definite personal (I and II),

Elliptical

» Iadefinite personal, and Impersonal.

Distinguish between subject and predicate; conjugate verbs. .

‘-‘l—f’ _; .
¢ (1) 1Is there a subject)
in it? ’
Yes | , No 4
1 - . f
" (2) 1Is there a (2) 1Is the predicate ~ ' _
predicate? - expressed by a . N
verb in the first
or second person?
Yes No Yes " No
Conclusion ‘Conclusiqn: Conclusion: (3) 1Is the predicate y L
Definte- Elliptical Definite- expressed by a : ”
personal personal) verb of the third ‘
type I type II) , person plural (in .
the past tense, . -
simply by a verb
in the plural)?
Yes f No
: g Conclusion: Conclusion: .
Indefinite- Impersonal
_ personal
Figure 4. Identification Algorithm after .
Landa (1974), p. 437
. & .
@ N

37

L

Xerxes)? . . :
Yes J No %, ' O

C: Add ' to the nominative !
form of the word to
form the possessive.

B: Add 's to the nominative
form of the word to form
the possessive.

Figure 5. Algorithm for Forming the Possessive of English Nouns

3 } ’i
.) 33 _ ~ ' |
. t\ i
P /)
Domain: Vocal or subvocal expressions including a possessive noun
and the object of the possession.
Range: Written possessives.
. Entry skill: Ability to write the nominative form of a noun after hear-
. ing or saying the possessive form.
a: Does the phrase’contain
- a term naming an owner
‘ X and a term naming some-
thing owned? ‘
.) . . Yfé‘ J . No
B) b: 1Is the word naming the At No possessive '
’ . owner a proper noun or . '
is it a common noun? N
. 3 -
- Proper : Common
. . c: Is the word singular f:: Does the nomipative form .
or is it plural (e.g., of the word naming the owner
the Rosses, the “end either in "s" or in an
Williamses)? "s" gound (such‘'as lass, - kN
L4 appearance or.righteousness)?
) v Yes l : No
Singular . Plural ,
N\ . b ’ i
d: Does the nomina- . .
tive form of the)L
word ‘end in "s" or))
in an "s' .sound? .
i : /
+No Yes
e: Is the word Jesus,
Moses, or a Greek
name ending in "es" :
(e.g., Euripides,

AR T U MM U A DA

IR -2 o DAL A L R A

Ay Ty TR T TR T AT RS TR T
ik
A .

R A

b: Is one denomi- ,
nator a multiple > .
of the other? ’

) / ! ¢t Are the denomi- e
Factor larger denomi- _nators multiples
-) nator into two factors' of a common factor
with smaller denomi- + other_than 1?7

nator as one factor.

-7

Multiply the numera-

tor and dg%ominapor. : nator by multiplying
of the.,other fraction " the two individual
by thisgfictor. , . denominators.
: , ; B
VR F: Form the common denomi- I: Multiply each nume- .
- nator by multiplying rator by denominator
: the common factox by ’ of other fraction.

the two unique factors.

¢

G: Multiply each numera-
tor by unique factor
of the denominator of

- the other fraction. \

t)

’

- -

A: .Add numerators.

B: Write sum over com-
mon denominatox.

Figure 6.. Algorithm for Adding Fractions

/

Landa (1974) refers to a third type of algorithm, oné‘whi&h enables
the user to discover previously unencountered identification and/or
transformation algorithms. He calls this a search algorithm and illu-
strates it by means of an example in which a learner.is taught how to
turn on a given machine. One method of teaching the learner this skill
would be to mske use of a transformation algorithm designed for the task.
Landa contrasts this pethod with one in'which the learner uses a search

T ‘ algorifhﬁ.

2a ek Dbt o Y dniteind dek dbdnticasiuabl et it ARALERCE (G 5 Mkl St A i 2ol A e L M St it st I ettt i Ak e L e el e A

, .

r A
]

@

1 ¢

-
L] "7

')‘ 35’

A second method of dnstruction is to supply the student with
some search- algorithm without explaining the algorithm of
solution to him, pointing out, for example, what sequence of
. actions he must try to perform with the apparatus in order
to find the upknown rules for turning %t on and for verifying
that it is in working order (i.e., discover the algorithm
of solution). In_ that algorithm, for example, there could
be indications of the type: At first try pressing button a, ,
then b; if nothing -happens, then try placing the switch in
the up position, then push’ button a, and so on. In an algo-
rithm to sedarch for another algorithm .all possible opera-
tions and their sequences must be foreseen., In carrying out
- these operations; the student necessarily discovers which
sequence of operations leads to the goal, i. e.,luncovers the
" algorithm of solution which he can then apply to any equip-
* ment of the s&me design (p. 133)]

Unfortunately, Landa doesn't provide a more specific example.
Neither does he report any empirical investigations dcaling with search
algorithms. Bussmanu (1971) reports an investigation of. the effect of
teaching learners search algorithms for the solution of a type f

"puzzle" problem. The Katéna (1940) match stick pro lem, which ‘Bussmann
used, i1s a classic problem in the study of learning #nd retention. The
subject is given.a figure consisting of a number of adjoining squares.
His problem is to reduce the number of squares to onb less than the ori-
ginal by moving one and only one match stick Beloy is an example of
the Katong match stick problem

A.. . .

One of Bussmann's algorithms for the solution of Katona match stick prob-
lems is as follows: ’

Domain:

» by one.
~ Range:

The side to be moved;

All Katona match stick problems in which the movement of
one side to a new position reduces the number of squares

~

the new position of that side.
Entry skill: Idertify interior side, isolated side, incomplete square.

. No solution &

1

Look at Figure M. -

i
‘
o
4t

possible.

EXIT

__J This is not a correct
solution. Replace the
side in its original
position.

s > T-

E Is this isolated side
part of an incomplete
s square of 3 sides?

, J,+
S If you complete this
- incomplete square, will

you complete another
at the same time?

Does Figure M have an interior
side which can be moved?

l+‘ ‘

“ing sticks make up-Figure M~

Remove this side. The remain-

y

Does Figure M~ have more than

1 isolated side? .

o

5

Does Figure M~ have exactly 1
isolated side?

.

<'_‘_P_ |

Does Figure M~ have an incom-
plete square of 3 sides which
you have not¥previously tried?

g -

'

A

" If you complete this incom-

plete square, will you complete
another at ‘the same time?

-

' Complete the in-
complete square

—

The problem
. % is‘solved.

e o

-

Bussmann clearly ascribes the qualities of Landa's search algorithm to
both his Katona algorithms.8 However, it is clear that the algorithm
presented here is one which yields solutions to a given class ofpKatona
problems. Consequently, it cannot be a search algorithm in the Landa
senge.- A search algorithm does not produce a solution, per se; rather,
it produces an alg.rithmic method for arriving at solutionms. Bussmann's
algorithm is cléarly a transformation, not a search, algorithm in the
sense in which we have defined the two terms. “

Although we lack the ability to present examples of search algo-
rithms at this time, we are convinced that further study of this kind of
algorithm is an extremely promising area for future research and develop-
ment. Perhaps instruction in algorithmic search methods could result in

a learner's achisitionnof a generalized.problem~solving ability. It is °

evén conceivable that such instruction could significantIy influence
menta1;2$¥§%2§::nt. Further Spéculation on this subject is reserved for
Sectioff s ow. . * '

Algorithms‘may also be classified as functional or control algo-
rithms. ZLanda (1974) defines a functional algorithm as "an algorithm by
which the operation of a system is carried out." If this system re-
quires the intervention of a higher-order system for any reason and if
this second System intervenes in a predictable, algprithmic manner, then
this second system acts accordirg to a control algorithm. The two con-
cepts are relative. A student solving an equation in a programmed text-
book follows a functional algorithm. The path he is to follow through
the program is ‘a controlling algorithm with respect to the subsystem
Ngtudent" but it is a functional algorithm with respect to the higher-
order systém "textbook and student." Textbook and student, as seen from
the standpoint of the teacher, follow a functional algorithm as long as
all goes well. As soon as the student needs additional help, the tea-
cher intervenes; he‘may do so algorithmically, i.e., according to an
algorithm which is a control algorithm for the system "student-textbook"
but a functional algorichm for the system "teacher.")

The functional algorithm for the teacher is the algorithm by which
the teacher functions (as long as his behavior is lawful). In .more
general terms, the functional algorithm of the teaching system {the pro-
grammed text, the computer, the teacher, etc.) is called a teaching
algorithm (Lansky, 1969; Landa, 1974); it is in distinct contrast to
the functional algorithm of the learning system, which is called a
learning algorithm (Lansky, 1969). The latter term is also used for
algorithms the learner is supposed to learn. In order to avoid confu-
.sion of these two fundamentally different classifications, Bung (1969)
has suggested the term subject matter algorithm to designate 'a learning
algorithm which the learner is supposed to learn.

8Although Bussmann's article appeared in 1971, he had access to
the original Russian as well as the German translation of the work which
we refer to as "Landa 1974."

L ¢

g 42"

> L 4 . - Ve

38

To summarize: -

A functional algorithm isg an algorithm by which a user functions;
one by which the operation, or function, of a system is executed.

A control algorithm is an algorithm which controls the user's path
through another algorithm.

A teaching algorithm is the functioﬁal algorithm of a teaching
system. .

A learning algorithm is the functional algorithm of a learning
system.

Landa (1974) distinguishes betfween an algorithmic process, an algo-
rithmic prescription and an algorithmic description. A computer, for
example, is involved in an algorithmic process when it executes a pro-
gram. If this program is in a form that the computer can read (such as
punched cards, for example), then the program controls the process and
it is an algorithmic prescription. If the program does -control the pro-
cess and if it can be used for communication only, it is an algorithmic
description. A human brain may or may not function as deterministically
as a computer, "but when humans do behave in a lawful and predictable
manner, they are engaged in algorithmic processes, or at least in quasi-

. algorithmic processes. 1If one does so intentionally and consciously by
following an explicit procedure, one is following an algorithmic pre--
scription. 1If a person does so without conscious intent and awareness,
his activity may be amenable to algorithmic description, but it does not
necessarily follow an algorithmic prescription. The rules of grammar,
for example, are followed correctly both by people who know them-and can
state them and by people who cannot do so. Both kinds of people engage
in algorithmic processes, hut the rules of grammar are algorithmic pre-
scriptions for the former only, even though they are algorithmic descrip-
tions for both.

% % i 4
To summarjze:

When a user consciously and intentionally applies an algorithm, he
is following .an algorithmic prescription.

When a user, without conscious intent or awareress, applies an
algorithm, he is not following an algorithmic prescription even though
his activity may be amenable to algorithmic description.

E

.

-

4
VI. The Uses of Algorithms in Instruction

.
7;

Algorithms as Aids to the Learner

We have already seen that an algorithm tells the user exactly what
to do., An algorithm makes it possible for any user who possesses the
requisite entry skills to solve correctly any problem of a given class
of problems, Furthermore, this user solves the problem by using pre-
cisely the procedure, and only that procedure, which the algorithm
writer intended. The error potential attributable to misinterpretation
is always minimal since the representation of an effective algorithm is
always simple and unambiguous Given an adequate algorithm, someone
with little or no pretraining should be able to perform correctly, ade-
quately, and consistently, even whén he is confronted with tasks as
difficult as troubleshooting and repairing compliex equipment, preparing
and interpreting reports, or evaluating performances.

If an algorithm is represented in an appropriate form, the user is
spared the waste of time which occurs when he must read both the rele-’
vant and the irrelevant contingencies. In the algorithm for forming
possessives, the user is spared the trouble of reading two unneeded dis-
criminators and one unneeded operator whenever he is dealing with a
common noun. If the same algorithm were presented in discursive text
form, it is highly improbable that he "¢ould avoid reading all the text.
Note, however, that this efficiency 18 a function not of the algorithm
per se, put rather of the form of representing the algorithm.

We pointed out in the section ‘on reprer cation that an algorithm
need not be completely read before a user begins to apply it. Even more
important, it need not be. completely understood in crder for a user to

" apply it. This is not to be construed as meaning that we are .endeavo-

ring to assist learners in solving problems without understanding the
procedures they employ. On the contrary, an algorithm enables a user
to develop understanding, little by little, as he sees a process work
for him. Consequently, algorithms permit successful application and

' understanding to develop simultaneously.

Many algorithms are self-sufficient performance aids. Given the
minimal instruction in how to "read" the representation form, such as a
generalized flow chart, the user frequently needs no other assistance in
mastering the skill which the algorithm is designed to implement. Most
algorithms are excellent examples of "self-instruction."

_Algorithms may be used to enable a learner to check the accuracy
of a diagnosis or a prescription which he has made. In this context,
an algorithm enables a learner to monitor his own performance effec-
tively. Consider the key for selecting evaluation models, Figure 7,
(from Horst, Talmadge, and Wood, 1975). The student has learned what
the five models are and how to choose one of the five when confronted

" with a summary account of a project. As he acquires skill in diagnosing

the nature of a project and in selecting a model, he learns to check the

‘validity of his selection by comparing it with the result obtained when

he uses the key. Obviously, the disgriminators in this kind .of

¢+

. . - E
4‘/\; : o
. h . o
y LS s P »
i
.

1P ST9PON UOTIBNTRAY JUTIDV[DS 103 991L UOTSTIOOQ °; 2an31g
poouaxajoy
WwIoN .
S TOPOR ON- ’
T }s21098
Hmvow : 31g939ad aoTaadns
UoTs82139yY . e aaey dnoag uos)
1eI2U2H 23
~Taedwos ay3z ss0(q
: - o _ [{uoTasand
S . .
% T°POH oN
\ ({91028 FJoano 3saa
, mawvow . -2ad ® woaj psutwm
cowmwmuamm X sox | -1939p @2q pasu 4q
TeTodadg - JusuuB3rsse 11TIM >
AN
. g9juo1asand
€ TPOH . ON N
~ . , , - ¢891q®
-TIBA JuUBADIDI
sTsd1BUy A A11euoTaeonps
. mocmwum»oo $94 ! uo jusiearnbs

o ¢ T°POH

sdnoa3
Payo3s8uw Y3t
uostardudd
18333804

‘ ‘ 40

kY

~
. - L P e .

poaN

(591008 3s9391d Uuo
poyd3lew.sq syrdnd
uostavdmos pue
_judwlpsal uen

- jposu hw pautuw
-1939p 10 wopuea

y 2q sdnoa8 o3

Juauru3Isse T1IM

sdnoa8 say

sdnojxg

.

0T3S0

.

-

[l

ON

4 cowuwwad.

€ uoIjsond

¢{SUOTITP

~U0d IIBNTRAD
a3 pauligse
2q sitdnd

Tenpratput |

10 sdnoa8 11IM

¢ uorasand

0

;u8Tsap uoTy
-enieas dnoald
uostaedwod

® Aojdws o3
21qIseazy 3T sy

<

1 cowumwmd

&

4

O

Aruitoxt provided by Eic:

E

3

-

»

41

algorithm are extremely abstract; consequently, the algorithm is used

after the student has acquired the concppts in the seven boxes. This

algorithm would not be appropriate in a self-instructional setting.

Algorithms as Aids to the Instructional Designer

In addition to the uses we have previously described, it appears

. that algorithms may also be used to aid instructional designers. We

base this hypothesis on the observation that, in many instances, algo-
rithmic procedures and instructional design procedures seem to be closely
related. Some of these nelationships areodiscussed in greater detail be-
low. Y)

Algorithms and objectives. Given an algorithm which has been deve-
loped with’some nontechnically stated instructional goal in mind, it is
very easy to derive a correct, technically stated, and easily communicated
specific terminal objective from it. Let us assume that an instrucional
objective always has these three elements: conditions, performance,
standards. The domain of an algorithm is essentially equivalent to the
conditions and the range of an algorithm is essentially equivalent to the
performance:; Thus, with a few minor changes and the addition of some
standards, a statement of the domain and range of an algorithm can be
transformed into a behavioral objective. For example, consider the algo-

~ rithm for adding fractions (Figure 8). By adding the word "given" to

the statement of the domain of the algorithm,we obtain the conditions
portion of our outcome: . .

“Given any set of two fractions with who ‘e number denomi-
nators . . .".

[

A slight alteration of the statement of the range of the algorithm pro-
vides us with the performance portion of our outcome:

", ., . the student will compute the sum of the set . . ."

By adding a statement of standards {such as "ecorrectly"), we have a
clear and concise behavioral objettive:

[

"Civen any set of two fractions with whole number denomi-
nators, the student will compute the sum of the set correctly."

The relationship between algorithms or algorithmic formulations and
objectives is, of course, based on the fact that both represent descrip-
tions of terminal behavior. Ideally algorithms are expliC1t unambiguous
descriptions or prescriptions, while objectives are summarized descrip-
tions which, ideally, are also unambiguous. The interdependence of
algorithms and objectives is unexplored territory which may yield inter-
esting research problems. .

Entry skills and learning hierarchies. An explicitly formulated
algorithm makes it possible to "read of f" required entry skills with a
degree of precision and thoroughness not available with other procedures.
Since many aligorithms include subroutines and/or represent subroutines

15

T - 42

Any ‘set of two fractions with whole number denominators
Sum of any set of the domain
Factoring of natural numbers

Domain:
Range:
Entry skill:

Example: 2 9+32 _ 41

3
16 + 3 = 48 = 48 ° (Path: abcHIAB)
at TIdentical denominators?
. L]
Yes » No
. “b: Is one denomi-
nator a multiple
of the other?
Yes l* * No
v

!

C: Factor larger denomi-
nator into two factors
with smaller denomi-

Are the denomi-
nators multiples
of a common factor
other than 17

nator as one factor. l
. Yes No
D: Multiply the numera- ‘ H: Form common denomi-
tor and,denominator ’ * nator by multiplying

of the other fraction
by this factor.

the two individual
denominators.

b

¥: Form the common denomi- I:
nator by multiplying
the common factor by-
the two unique factors.

Multiply each nume-
rator by denominator
of other fraction.

G: Multiply each numera-
tor by unique factor
of the denominator of
the other fraction.

A: Add numerators.

B: Write sum over com~
mon denominator.

Figure 8. Algorithm for Adding Fractions (Version 1)

2 ek Toi il bbbl Sobbia A AN St i el S i A i
.

»

43

themselves for higher order algorithms, it is also possible to determine
learning hierarchies by placing the derived entry skills (subroutines)
into an order which shows the dependent and independent relationships
among them. Both the determination of entry skills and the determination
of a learning hierarchy are demonstrated below. :

¢ W
Given the algorithm for adding fractions (Figure 8), a designer can

"infer those concepts and skills which must be part of the learner's re-

pertory if he is to be able to execute this particular algorithm:

Concept hierarchy:,' ‘Skill hierarchy:

fraction ” factoring whole ﬁymbers
" numerator) muLtiplyiﬁg‘;hole numbers -
denominator addiﬁg whole numbers
multiple

factor

The list of skills i.s ordered by skill levels. Factoring is clearly
the highest level skill and requires skills in multiplication as a prere-
quisite while multiplication requires addition skills as a prerequisite.
However, this ordering does not imply that the skills listed below the
highest level skill represent a complete list of all prerequisites for
the highest level skill.

Such a list or hierarchy can now be developed by writing an algo-

.rithm for the highest level skill (in this case "factoring whole num-

bers™). This algorithm again yields an ordered list of prerequisite
skills, for each of which an algorithm may need to be written. Thus, we
arrive at a hierarchical order of algorithms, each accompanied by an
ordered list of prerequisite skills. 1In order to avoid the problem of

an infinite ragress, the designer, at some point, must decide that some
particulat skill must be part of the learner's repertoire. Until that
particular point is identified, any skill in a "higher" 1ist must event-
ually show upin a'lower" list or if it does not eventually show up as one
of the subalgorithms, a branch in the hierarchy is indicated and a
separate algorithmic analysis of these skills must’ be performed.

‘The final outcome is a very precise hierarchy of algorithms or of
learning tasks which should include very little if any subjective deve-
loper bias. Parallel with the development of the skills hierarchy is
the developmeit of a vocabulary or concept list. This list is also
ordered, inasmuch as any given new concept requires other prior concepts
for its definition and explanation. The list of concepts for a given
set of algorithms, therefore, represents a second hierarchical network
which is assumed to be complementary to the network of skills. The two

4§ |

L3 ,

PGt il 2L el S Rt ttel e i

-

44

hierarchical methods together represent a very complete basis for making
decisions on sequencing the components in the ultimate instructional
product,

Two things should be pointed ocut which bear on the applicability of
the scheme outlined above. First of all, the range of applicability is
limited to subject matter areas or topics within subject matter areas
which are amenable to algorithmization, i.e., which have sets of inter-
dependent rules or procedures as content. For example, most of the sub-
ject matter in history is not amenable to algorithmization because the
content does not generally consist of interdependent rules or procedures.
It may be possible to identify isolated bits and pieces of algorithmic
subject matter in history and thus benefit in some small measure from
making these algorithms explicit, but sequencing decisions on a larger
scale will have to be made on the basis of criteria other than hierar-
chies developed by algorithmic analysis. Secondly, in the literature we
find very little empirical validation and very little in-depth comparison
with other similar approaches, such as the one demonstrated by Ehrenpreis
and Scandura (1972), which deals with the relationships of rules and
higher order rules that could be utilized in the construction of a mathe-
matics curriculum. It is not entirely clear on what basis the authors
call their approach "algorithmic," but it is clear from their data that
an in-depth analysis of logical relationships exiting within a subject
matter domain can lead to the elimination of a great deal of redundancy
and thus to greater instructional efficiency.

Scandura (1971) identified "several hundred" rules for several
Jundred tasks in a mathematics curriculum. An analysis of these rules
showed that many of the lower order rules could be subsumed by 12 higher
order rules, thereby cutting the total number of rules by approximately
50 percent. A comparison of two groups, one of which had learned the
original set of rules and the other the reduced set of rules, showed es-
sentially that ". . . the higher order rules group was taught less but
learned more." This result leads us to wonder whether algorithmic anal-
ysis may lead to similar gains in instructional economy in other fields.
‘Algorithmic analysis is somewhat broader and more inclusive than
Scandura's approach, since it includes the parallel development of a con-
cept hierarchy. It may, therefore, be an even more effective overall
approach--a hypothesis that should be put to the empirical test.

Prompting. Prompting is a technique which instructional’designers
use frequently; so is the gradual withdrawal, or fading, of prompts.
Algorithms are highly amenable to the gradual withdrawal of a prompt.
Take for example the fraction adding algorithm (See page 42): after
the pupil has added several pairs of addends correctiy, one or another
of the discriminators or operators can be covered or removed and the
pupil continues summing pairs of fractions. This process is repeated
until ‘the pupil can find the sum of a pair of fractions without referring
to the flow chart or any part of it. Remember: it is the semantic, not
the syntactic, elements of the algorithm which are gradually withdrawn
or faded. The complete algorithm, we trust, becomes a part of the pup-
il's cognitive structure; stored in hir long-term memory, it can be used
whenever the need arises. <

¥

.

',

45 AN !

Figure 9 provides an illustration of the technique. The problem is
to constru¢t a magic square--one in which the sums of all columns, all
rows, and all diagonals are identical; thus:

N

4 3 81 =15

15

O

(%]

—
1

15

]

~

(=)
1l

3
4

=15 =15 =15 ¢

Try the algorithm, starting with any whole number except 3. Then try

the abbreviated version, Figure 10, from which many of the prompts have

been withdrawn. Next, try Figure 11, which is even more "faded'" than

the previous version. Finally, it is entirely conceivable that you can

now construct a magic square without reference to any of the three

figures. (Again--remember that the representation of the algorithm has
been faded, not the algorithm itself. You probably still use the algo-
rithm, which has now been stored in your memory, to solve the problem.) :

-

Individualized instruction. Since nearly every task can be accom-
plished in more than one way, it is usually possible to develop more
than one algorithm for one and the same task. Two algorithms which are
applicable to the same kinds of problems and yield the same results are,
called equivalent. Equivalent algorithms have the same range and domain,
but different operators and discriminators and, therefore, generally re-
quire different entry skills. One and the same behavioral objective may
thus be taught using one of several equivalent algorithms, depending on

“a student's entry skills. The Euclidean algorithm for finding the great- .

est common divisor of any two whole numbers, is a good case in point.
Version 1 (Figurel2) requires the ability to factor ,whole numbers, Ver-
sion 2 (Figure 13) requires subtraction of whole numbers, and Version 3
(Figure 14) requires the division of whole numbers as prerequisites.

It follows that the same objective may be reached by at least three ~
different instructional routes. This provides opportunities for indivi-
dualization tha} go far beyond flexibility in time allptments and
remedial adjustments. For example, much of a mathematics curriculum
could be taught by means of a number of entirely different paths, each
of which would lead to the same set of terminal 'objectives.

It should be noted that differences in learner traits as well as
differences in specific entry skills may be accommodated by. an appropri-
ate choice of the algorithm to be taught. A learner may, for example,
possess all of the entry skills required for any onme of the three ver-
sions of the Euglidean Algorithm. In this instance the choice could be
made on the basis of such learner traits as IQ or learning style. In
any case, algorithmic analysis gan open up a wider range of true choices

for the optimal adaptation of instruction to the learner.
) .

ol

Y

i
:
?
|
1
\
{
i:
E
:
i
i
3
E
]
5
.
'r
E
E.‘
E’
:
E
g
E
3
s
i‘.

Think of the next higher number. :
’ 1
Is it the last one needed to
complete the square? .
Yes - ‘No
Put it into the Is the square dia-
last remaining gonally to the right
square: bottom and up available?
+ row, middle and
STOP.
t
T - Yes No~
Put the number Did you put the
into-the avail- previous number
able sq?are. into the top row?
I Yes : No,
‘ 1Is the square in the Did you put the pre-.
. 2 bottom row, one columm vious number into the
‘ to the right of the pre- rightmost column?
E vious number available? l
Yes i No _Yes No
Put the number L 1s the square in .
into the avail- * the leftmost column
able square. Put the number of the row above °
P] in the square the previous num-
) below the pre ber available?
vious’number.
- Yes No .iﬁ’
Put the number into Put the number in the
the available square. square below the pre-
l vious number, |

46

Domain: Nine different whole numbers > 1; a square of nine empty
- cells.
Range: A 3x3 array of numbers whose column sums, row sums, and

, diagonal sums are identical.
Entry gkill: Ability to follow written directions involving left, right,
’ . up, and down; ability to count. by ones in whole numbers.*

Put the first number of the
sequence into the middle
_square of the top rows

Figure 9. Algorithm for Producing a 3x3 Magic Square

! .
*It is interesting to note that this algorithm does not require the user
to add or subtract.

2
| =

&
Place first number
S : 9
'Ne‘xt number
% -
Tast one?
T | L. .
Yes ., No: , .
A ‘Place iéd o Diaéknal?
STOP. . v o,)
.) Y . L
Yes - No °
Fill in. e ‘Top row? ,
3 B Yes ' No
ke— : — <3
) Bottom row Right
- - one right?" column?
Yes. . No 4 Yes ' No
Fill in. . rut;J' Lef?:
below. golumn
3 one up?
ﬂf‘ Yes No -~
s \ r ¢
‘ v
Fill in, Put
below.
A

Figure'10. Abbreviatéd Flow Chart

(Magic Square)

02

18

4 &
First number -
B
Next number))
Last?
i
STOP . Diagonal .
(-4
* Top row?
/ N\
. Right
‘ - or column?
>
, ‘ .
Figure 11./ A Reminder
(Magic Square)
o
. '3X%)

Domain:
Range:

«

49

¥

Any set of two natural numbers

The greatest common divisor for any set of the domain
Entry skili: Factor fatural numbers

5

Example: Find GCD for 144 and 82, 144 =1x2x2x2x2x3x3
’ . . 32=1x2%2x2x2x2
1x2x2x2x2=16
A: Convert both numbers
. * into products of
" prime factors
h} "
B: Find the smallest
: . fgctor of the first
/ product ! du—
a: 1Is-that same: factor
among the factors of ,
] the secgnd product?
| . + o " -
¢ o
C: Mark it down ’
- o ’ . . E: Strike this factor
... from the first product
.‘ N
D: Strike'one occur-
rence of this factor
fromfeaqh product
./. D *
. bs 1Is there a factor
. 13 left in the first
., product?
X + -
S \ ‘&

F: The product of all
factors you have
marked down is the
greatest common

’ divisor.
Fiéure 12, Euclidean Algorithm (Version 1)

o

50

Domain: Any set of two natural numbers
Range: . The greatest common divisor for any set of the domain
Entry skill: Subtract natural numbers
Example: Find GCD for 144 and 32: 144 - 32 = 112 .

112 - 32 = 80

80 - 32 = 48

- 48 - 32 = 16
37 - =
START 16 16 -

a: Is the first numbe
smzller than the
second number?

[1

A: Subtract the first \ -
number from the \
second and regard Lo
the result hereafter
as the second number ¢ &
b: Are the two
numbers equal? N
+ -

C: Either of the two B: Subtract the second
numbers is the number from the first
desired greatest and regard the result
common divisor hereafter as the

first anumber
\

Figure 13, FEuclidean Algorithm (Version 2)

1

51

Domain: Any set of two natural numbers
Range: The greatest common divisor for any set of the domain
Entry skill: Divide whole numbers
m
Example: Find GCD for 144 and 32: 4
32) 4
128
16 remainder
—2
16) 32
32

as:
+

0 remainder

Divide the smaller
number into the larger

and find the whole <€

number vremainder

Is the remainder 07

v

B: The last divisor
is the greatest
common divisor

Let the remainder be
the smalier number
and the divisor be
the larger number

Figure l4. Euclidean Algorithm (Version 3)

K4

o

.
1
|
i

i
|
i
|
*
i
|
|

“y

Q

ERIC

Aruitoxt provided by Eic:

VII. Research and Development Problems

Nearly every suggestion for the use of algorithms discussed in the
preceding sections is based on logical or philodophical considerations.
There is little basis for any empirical pronouncements because the liter-
ature is almost completely devoid of reports of experiments in which
algorithms are an independent variable. 1In this section, a number of
questions are raised which prcovide a point of departure for the formula-
tion of researchable hypotheses in which algorithms are the independent
variable. First, general questions are discussed; then questions which
are particularly relevant to flying training are considered.

Algorithms for Learning and Teaching] .

It is obvious that some learning tasks and some teaching procedures
are much more amenable tq algorithmization than others. For example,
one can safely assert, without empirical evidence, that it is a fairly
straightforward matter to construct an algorithm for the identification
of families of the order neuroptera, but that it is fairly difficult to
construct one which can be used to identify certain personality traits
on the basis of subjects' handwriting samples. The important question
at this time is not so much one of ascertaining for which learning or
teaching tasks an algorithm can be constructed; this can be determined
rather simply by attempting to construct an algorithm or a set of algo-
rithms. What is of concern at .this time is whether or not a given set
of algorithms facilitates learning or teaching. If 2}gorithms are faci-
litative, is it possible to begin defining classes of problems for whose
solution algorithms are an efficient and/or effective aid?

3

Perhaps the most difficult, but also a potentially extremely re-
warding effort lies in the area of search algorithms. As we mentioned
in Section V, a search algorithm is essentially an algorithm which
enables the user to discover or formulate additional algorithms. Theore-
tically, it should be possible to construct search algorithms. The lite-
rature, however, provides no examples of research endeavors along this
line.” What are the precise characteristics of search algorithms? How
are they generated? What applicability do they have? These and similar
questions are among the most significant which we have been able to iden-
tify in our research thus far.

The following is a representative, not exhaustive, list of addi-
tional questions to which research efforts might be addressed:

1. Can an algorithm increase a learner's ability to generalize?
If so, can the ability to generalize be facilitated by the use
of algorithms when the focus of the learning task is the gen-
eralization of the structure? when the focus of the learning
task is the generalization of the substantive elements?

2. Does a learner who discovers an algorithm perform better than
a learner who is given an algorithm?

L]

¢

54

F NS 3;’“ﬁhat is the applicability of algorithbms to the acquisition of

various types of rule-governed behavior (see Eubanks, 1976)?

4, Will differences in the representational form of a given algo-
rithm produce differential effects? .

5. What steps does a subject matter expert follow in constructing
an algorithm?) "

Algorithms in Flying Training

There are many academic areas in the Undergraduate Pilot Training
Curriculum. Examples of these academic areas include such topics as
"aerospace physiology, aircraft accident prevention, instruments, naviga-
tion, applied aerodynamics, and many others. Research addressed to the
role of algorithms in learning and teaching such academic topics is
covered in the immediately preceding paragraphs., On the other hand,
flying training (particularly such areas as procedures, instruments, and
navigation, in both simulators and aircraft) presents a set of problems

. ~ quite different from any discussed heretofore.

One of the reasons why flying training presents a different set of
problems i3 related to how one develops an algorithm for learning a re-
sponse which cannot be unambiguously described by any verbal means. For
example, we have frequently referred to the set of seven verbal cues
which aid a4 student pilot to master the Vertical S-A. If we wished to
algorithmize these cues, we would immediately be confronted with the
problem of representing the first operator, "apply power at a smooth,
slow, and steady rate." The verbal representation, either textual or
oral, appears to be insufficient to control the learner's behavior within
very precise criterion limits (Brecke, Gerlach, and Shipley, 1974).
Thus, it seems unlikely that an algorithm can be constructed which would
depend, wholly or partly, on such a verbal representation because resul-
tivity would be lacking. The verbal cue permits too much- response vari-
ability to insure an acceptable execution of the maneuver. Obviously
research is needed which may yield a solution to this kind of problem.

Quasi-algorithmic prescriptions and quasi-algorithms. Landa (1966)
uses the term quasi-algorithmic prescriptions to designate procedures
which are not algorithms in the strict mathematical sense.. He distin-
guishes quasi-algorithmic prescriptions from algorithms proper in this
manner:

(1) The criteria of replicability, generality and resul-
tivity are only approximately fulfilled by quasi-
algorithmic prescriptions. ‘

(2). It is generally not possible to unambiguously delimit
the domain for quasi-algorithmic prescriptions.

(3) It may not be possible to specify a finite number of
operations for quasi-algorithmic prescriptics.

- 08

> 55

S

It appears that it would be difficult to identify quasi-algorithmic
prescriptions on the basis of the distinguishing characteristics de-
scribed above. Indeed, Landa himself emphasizes that the notion of a
quasi-algorithmic prescription is less precise than the notion of an
algorithm. However, Landa does discusss a characteristic of algorithms
which, although he apparently did not intend it to be used for such pur-
poses, can help in the identification of quasi-algorithmic prescriptions.
Landa states that an algorithm is sufficiently elementary if,'and only
if, the discriminators and operators are unambiguous. Operationally,
this translates into the statement that a given user (or class of users)
must ‘be able to make the discriminations and.perform the operations
specified in the algorithm. This leads to the logical conclusion that
theelementarity of an algorithm is dependent on the user. If the user
is a machine, the problem of determining whether or not the algorithm is
sufficiently elementary is relatively simple; indeed, there should be no
reason why this elementarity, or lack of it, cannot be specified a priori.
In the areas of education and psycholvgy, the problem is quite different.
Human users are less predictable than machines. Indeed, the behavior of
humans is so unpredictable that frequently“the elementarity of an algo-
rithm must be determined pragmatically; it cannot be determined a priori.
Add to this the fact that Landa is concerned not only with the upper
limits of elementarity, but also with the lower (i.e., whether or not the
algorithm is too elementary), and the problem becomes even more complex.
Thus, Landa's concept of sufficient elementarity seems to lead to such
frustrating complexity that one might be led to conclude that algorithms
have little or no applicability to flying training.

Bung (1971); however, suggests a solution which deserves careful
attention. He has attempted to deal with the subjectivity problem which
elementarity poses by introducing the con~ept of quasi-algorithm:

Quasi-algorithms are procedures which are explicit for, and
can be carried out by, a specified set of human beings; algo-
rithms are procedures which are explicit for, and can be
carried out by automata. Since all procedures which can be
carried out by automata can also be carried out by human
beings but not vice versa, it follows that all algorithms are
quasi-algorithms but not all quasi-algorithms are algorithms.
The set of all algorithms is therefore a subset of the set of
all quasi-algorithms. (p. 3)

This definition permits the inclusion of machine algorithms in the class
of quasi-algorithms. From an instructional design and development point
of view, nothing is gained from Bung's distinction. However, if we
modify Bung's scheme for classifying algorithms and quasi-algorithms, we
arrive at a very practical distinction. Let us point out that Bung's
discussion of a user's ability to carry out an algorithm or quasi-
algorithm is similar to Landa's discussion of the sufficient elementarity
of algorithms. Keeping this fact in mind, let us divide all algorithms
into two classes, those for vhich the attribute sufficient elementarity
can be specified a priori and those for which it cannot. The former are
"true'" algorithms; the latter we shall call 'quasi-algorithms."

o3

A

R A S

56

Thus, it is a simple matter of logic to extend the concepts of Landa
«and Bung to a precise and practical (i.e., applicable to instructional
design) definition: ‘a quasi-algorithm is one fcr which the attribute
sufficient elementarity must be determined pragmatically. This extension
of the theory of algorithms is of particular significance to such areas
as flfing training. Many of the responses which a student pilot must

_learn are continuous control actions. It seems highly unlikely, given

the present state of the art, that true algorithms for any of the lear-
ning or instructional problems can be formulated; at least, it does not
seem practical to attempt to do so at this time. However, quasi-
algorithms may provide an effective means of surmounting the difficulties
imposed by the restrictive nature of true algorithms. The application of
quasi-algorithms to such tasks as learning an instrument maneuver is a
legitimate research and development effort.

Variables in algorithms. The question of whether or not an algo-
rithm is sufficiently elementary can be investigated on a syntactic or a
semantic or a pragmatic level.

(I) Syntactic variables. We have said earlier that the macrostruc-
ture of an algorithm represents its syntax. For example, the syntactical
aspects of the Euclidean algorithm (page 49) are shown in Figure 15.
Another representation of the syntax of this algorithm is the following

" set of symbols:

ABa2CDb3B3F.2EDb4BA4F.

These symbols have no specific intrinsic or endemic meaning. They are
not fixed to any particular subject matter (or algorithm) and could re-
present such diverse referents as the syntactical aspects of a procedure
for operating a machine or for ascertaining whether or not a specific
rule of grammar is applicable. It appears perfectly reasonable to cate-
gorize algorithms according to various syntactical features. Linear
algorithms without discriminators are quite different from branching
algorithms with operators only at the exit points; both differ from an
algorithm with recursive loops or from an algorithm without recursive

loops.

The syntax of algorithms provides a mechanism or a procedure for
the quantification of certain features, such as the number of operators,
discriminators, exit points, and recursive loops. These variables, as
well as the structural variations mentioned above, are certainly impor-
tant determinants of general and individual learners' behavior potential
with respect to replicable procedure. It is quite logical to assume that
syntdactical complexity of an algorithm and ability factors such as IQ are
directly related. An algorithm with the elementary structtire:

)
|

[o e

!
()

may well be "elementary" for pupils in grade one or higher. However, an
algorithm with a more complicated structure (for example, the Euclidean

6U

57

O - O &
11 Eom

o o=

Figure 15. The Syntactical étructure of the

Euclidean Algorithm (Version 1)

6i

58

Algorithm) may not be elementary for the same pupils. Version 1 of the
Euclidean Algorithm contains six operators, two discriminators and one
recursive loop. The Shipley version of the Euclidean Algorithm (Figure 14
has three operators, one discriminator and one recursive loop, Syntacti-
cally speaking, the Shipley version is mich simpler than the original,

and mdy be more suited'for students of lower ability, Syntactical vari-
ables may, therefore, be among the critical factors in determining when
learners can be introduced to any particular replicable procedure,

(2) Semantic variables. When we speak of the semantic aspects of an
algorithm, ‘we refer to the meaning of the verbal elements associated with
the symbols of the syntactical. skeleton. Weaver (1949}, in his preface
. to Shannon's basic treatise on information theory, expressed it thus:
"How precisely do the transmitted symbols convey the desired meaning?"
(p. 24). Landa refers to this aspect as content (as opposed to form).
The syntactic and the semantic components of an algorithm may be
separated for the purpose of illustration as well as for practical con-
siderations. Bung's Bird algorithm (see p. 24) illustrates this division.

To ask whether or not a procedure is replicable in semantic terms
means basically: Can a specified user understand what he is to d3? Will
every user of the specified class of users understand the meaning of each
element? Will every user interpret any given element in the same way?

To put it another way: Are the formal characteristics of these semantic
units elementary for an identifiable class of users? Landa (1974) answers
this question affirmatively and gives the following example: The truth
value of the sentence, "He got 3ff the train in Tashkent and went immedi-
ately to his Moscow apartment,'"” can be recognized as false by anyone
who has a normal command of language and the geography of the Soviet’
Union. It involves the basic semantic axiom that no object can be in twe
places at the same time. The example is, of course, designed to prove a
point, but it may not be possible to reduce every sentence in a procedure
to an axiomatic kernel of truth. Therefore, it will be necessary to de-
sign other means of analyzing the semantic content of a procedure. One
way to accomplish this purpose would be to decompose sentences into .om-
ponent concepts or into the component skills implied. The operator *'A"

in the Euclidean Algorithm (p. 49), for example, is crucial since it could
be assumed that any user for which this operator would be elementary

would surely have no difficulties with the remaining operators or dis-
criminators.

(3) Pragmatic variables. Given an algorithm which is semantically
adequate we are still faced with the problem of determining a "suffi-
ciently elementary" operation from a pragmatic standpoint. Can the user
execute the operations and discriminations specified? Can he do what he
is supposed to do? Can all users do it equally well, or with the same
speed, force, precision? If a procedure specifies, '"Advance throttle
smodthly," how wide is the range of possible behaviors resulting from

»

9Rough-ly equivalent th getting off a train in Chicago and going
immediately to one's San Francisco apartment,

59

~

this cue? For apprentice surgeons, the removal of an appendix may very
well be an algorithmic procedure in all but the pragmatic aspects of the
operation. Not every apprentice may have the combination of sensitivity
] , and dexterity required to cut through the abdominal wall. It may be com-
. 4 pletely clear to a user what it means to factor a number; he may under-
stand perfectly what he is supposed to do, but he may not be able to do
‘it correctly. A per person or a machine may not be able to make the required
o ‘ discriminations, as for example, a color-blind person who is directed to
react differently to different colors. A musical score for the tuba may
be algorithmic for a grown man, but a seven-year old boy may be physically
ungble to handle the instrument, even though he knoys exactly what he is
» supposed to ‘do. The pragmatic aspect, then, requires that an algorithm
be operationally definable; this means that it must be demonstrable that
~a.specified class of users can execute the algorithm in such a manner
that an accetpable outcome results.

-

. Whether or not the parts of a procedure are sufficiently elementary
— réequires an examination of three clearly identifiable aspects. The cri-
)) terion of sufficient elementariness is satisfied for a specified class of
. users if these users possess the prerequisite skills to unequivocally
perform the syntactic, semantic,and pragmatic discriminations and opera-
tions that are called for by the element or get of elements. If the
users fall short in their skills (i.e., if there is a deficit of user
skills with respect to requirements of the procedure), then the distinc-
- : tions made above provide the taxonomical and conceptual tools for pin-
pointing the exact nature of the deficit. The potential of any measure’
for remedying the deficit by either changing the procedure or upgrading
user skills is, therefore, increased, since the problem is more precisely
defined. !

B

These three variables offer a rubric under which specific research
_projects can be designed. JLet us return to the problem of continuous
control responses to illustrate further the applicability of this rubric.

Non-textual algorithms. Earlier we stated that the procedure for
executing the vertical S-A described on p.3 in chis paper was not an
- algorithm. Let us examine the syntactic, semantic, and pragmatic aspects
< of this procedure to determine why this is so. Certainly the syntactic
aspects of the procedure are sufficiently elementary for the intended
class of users (student pilots). FHowever, looking at the first cue in ’
this procedure, we can see the semantic aspects of the procedure, as well
as the pragmatic aspects, are not sufficiently elementary. The first cue
requires the student pilot to move the throttle smoothly, slowly, and
steadily. The semantic and pragmatic aspects of this prescription are
not sufficiently elementary, since not all learners will interpret and
’ respond to this cue in the same manner. There seems little else that can
be done. How do you state unambiguously, in a few words, what kind of
throttle movement is desired?

But algorithms need not be restricted to verbal (in this case,
textual) gemantic elements. "Incongruous as it may sound, the semantic
elements of an algorithm may be pictorial. Recall the algorithm for
identifying the family to which an insect of the order neuroptera

63

60

<

belongs (p. 30): since it would be virtually impossible to describe all
the defining characteristics textually, the algorithm includes pictures.

.Carry this a step farther. Assume for the sake of discussion that
a student pilot who can learn to distinguish between examples and non-
examples of a '"smooth, slow, and steady throttle movement.will be able
to produce such a movement. The simulatotr is programmed in such a man-
ner that the student pilot can put his hand on a moving throttle and
"feel" what smooth, slow, and steady is as his hand moves along with the
throttle. In effect, an algorithm might be constructed which would in-
clude, as one of its semantic aspects, a dis¢riminator based on this kind
of stimulus.

The application of algorithms to flying training could be very pro-
ductive if methods of représenting the "semantic" aspects can be deve-
loped. ' This kind of activity is a potentially high-yield endeavor.

Many aspects of flying demand responses to sych stimuli as curves, moving
objects, and other similar types of analog information. Ultimately, the
kind of.research activity suggested should lead to better methods of’

dealing with analog information--a very critical aspect of learning to
£z 3

Ty ———— e e e e e e
.

The concept algorithm represents a potentially powerful variable
for learning and teaching. As we learn more and more about algorithms,
prescriptions for the instructional systems designer should begin to
emerge. At present, the problem is not so much one of findiuy a research-
able problem under the rubric algorithm as it is selecting the best of
many candidates for the first mission.

64

8
‘r 2
\ £

EPILOGUE

Tk2re is, of course, the possibility that algorithms are "no damn
gepd." Conceivably, regearch might demonstrate that they do not fac111—
—tate learning, teaching, or -instructional design. What then?

We have an algorithm to cover that eventuality, too (Smoopy, 1975)
"Go back to Section I. Reread the story of Houd1n1 Then try magic.’

W
(op]
g |

P

L~

References

Bellman, R., Cooke, K. L., and Lockett, J. A. Algorithms, graphs and
computers. New York: Academic Press, 1970.

Brecke, F. H., Gerlach, V. S.s and Shipley, B. D. Effects of instruc- ¢
tional cues on complex skill learning. (Technical Report No. 40829,
Project No. AFOSR 71-2128) Arlington, VA: U. S. Air Force ‘ffice of
Scientific Research, 1974.

Bung, Klaus. A simplified notation for 'Ljapunov algorithms and their
meta-algorithm. Unpublished mimeographed paper, 1969.

Bung, Klaus. A cybernetic approach to programmed language instruction.
Educational media international, 1971, 4, 1-8. ~

Bussmann, H. Zur Kybernetik des Lernprozesses. Duesseldorf: Paedago-
gischer Verlag Schwann, 1971. v

Davies, I. K. "Selecting an appropriate strategy for communicaticn com=-
plex rules, procedures ard instructions." The Management of Learning,.
Ch. 9. New York: MeGraw-Hill, 1971.

Doctorow, E. L. Ragtime. New York: Random House, 1975.

Ehrenpreis, W., and Scandura, J. M. An algorithmic approach to curricu-
lum construction in mathematics: A field test. Structural learning
series, Report 64. Philadelphia: University of Pennsylvania, March
1972.) -

Eubanks, J. Rule learning and the design of systematic tvaining. (Tech-
nical Report No. 60115, Project No. AFOSR 75-2900) Bolling AFB, DC:
U. S. Office of Scientific Research, 1976. '

Frank, H. Ueber die Kalkuelisierbarkeit der didaktischen Variablen von
Paul Heimann. In: Northemann, W., and Otto, G. (Eds.), Geplante
Information. Weinheim: Verlag Julius Beltz, 1969. ,

Glushkow, V. M. Theorie‘'der abstrakten Automaten. (G. Asser, Ed., and
trans., K. Straehmel, s#rans.) Berlin: Deutscher Verlag der Wissen-
schaften, 1963. f

Horabin, I., and Lewis, B. Algorifhiis. Charles Town, WV: Ivan Herabin,
1974,

Horst, D. P., Talmadge, G. K., and Wood, C. T. A practical guide to
measuring project impact on student achievement. Washington, DC: U.
S. Department of Health, Education and Welfare, National Institute 'af
Education, 1975.

Katona, G. Organizing and memorizing. New York: Columbia University
Press, 1940. .

bo

64

. Knuth, D. E. The art of computer programming, Vol. 1, Fundamental algo-
. rithms. Reading, MA: ‘Addison-Wesley, 1968.

Landa, L. N. Algorithmization in ledrning and instruction. Englewood
Cliffs, NJ: Educational Technology Publications, 1974.

Lansky; M. Learning algorithms as a teaching aid. RECALL: Review of
educational cybernetics and applied linguistics, 1969, 1, 81-89.)

Lyapunov, A. A. The logical structure of programmes. In: A. A.

~ Lyapunov (ed.): Problems of cybernetics 1. Oxford: Pergamon Press,
1960. i .

.Markov, A. A. Theory of algorithms. Washington, DC: National Science
Foundation, 1961.)

-

Scandura, J. M. Deterministic theorizing in Structural learning: Three

. levels of empiricism. Journal of structural learning, 1971, 3 (1),
21-53., L ‘

-

Trakhtenbrodt, B. A.. Algorithms and automatic computing machines.
- ..Lexington, MA: _D. C. Heath, 1965.

Weaver, W. Recent contributions to the mathematical theory of commurnica-
tion. In: Shannon, C. E., and Weaver, W. The mathematical theory of
., communication. Urbana, IL: The University of Illipois Press, 1948.

—

B L i g
¢
b}

o ™~

ERIC '

adib e AR
-

-4

APPENDIX A
A SHORT HISTORY OF ALGORITHMS

|
|
Manhind has used algorithms or algorithmic—like prescriptions for 1

at least as long das it has engaged in such sociological phenomena as the
division of " labor or the establishment of laws, rules and procedures. }
In the context of social control the concept of an algorithm is under- 4
stood as a general procedure for the solution of a specific class of 1
problems. |
I
|

. Formal algorithms probably appeared first in the field of mathema-
tics» The prime example is the Euclidean Algorithm. Another example
from antiquity is Aristotle's (384~322 B.C.) Syllogistics In which he
set forth a system of rules dealing with certain forms of logical con-
clusions. More general applications of algoritnms as universal computa-
tion procedures in mathematics did not appear until the Middle Ages.

Our current decimal system originated in India and was adapted by
the Arabs around the mi-dle of the 7th Century. In one of his works on
mathematical and astronomical problems, Muhammad Ibn Musa Al-Hwarizmi .
(ca. 825 A.D.) explains the Indian (or Arabie) number system as-well as]
computational procedures within this system. The original manuscript is
lost, but according to one theory the algorithm was taken directly from
the title of the Latin translation: "Algorithmi de numeri Indorum . . .
Another theory suggests that the word was derived from the name of the
author, Al Hwarizmi.

L]

The algebraic methods introduced by Arabian mathematicians greatly
influenced Arymondo Lullus (ca. 1300 A.D.). Lullus was the author of
Ars Magna, which he considered to be a general procedure for discovering
all truths. The procedures or methods vhich he actually supplies are of
little or no practical value. His genius lies in the conception of the
idea of a general methdd which exerted a very stiong influence on fol-
lowing generations of mathematicians. For example, Pardano, more than
200 years later, still conceived-of algebra as 'the art of Lullus.”
Evidence to this effect is found, among other sources, in his Artis Magna
Seu de Regulis Algebraicis (1545), in which he published algebraic algo- ’
rithms, including the algorithm for the solution of tertiary equations
which was named after him.

: ~
During the 16th century most writers in the field of algebra appar-

ently believed that ali algebraic problems could be treated algorithmi-
cally. This was not the case with geometry, the only other branch of
mathematical science then in existence. Descartes (1596-1650), the
father of analytical geometry, attempted to develop a method of trans-
lating all problems of geometry into algebraic form(s), thus rendering
them amepablé to solution by means of algebraic algorithms. In his view,
all algebraic problems could be solved by applying one or more algo
rithms; consequently, he copcluded that there were no interesting prob-
lems remaining” for a creative mathematician. Considering the state of
the art at this time, this was a pardonable error, Almost three hundred
years passed before it was possible to delimit the range of mathematical
problems that could be solved algorithmically.

‘ k3

66

}
|

66

The concept of an Ars Magna led Leibniz (1646-1716) to attempt to
develop algorithms which were as general as possible. Leibniz empha-
sized that his deliberations were based on Lullus and that the concept
of an Ars Magna actually encompassed two component concepts, namely that
of an ars judicandi (decision procedures) and that of an ars inveniendi
(production procedures). He also pointed out that a truly algorithmic
procedure must be ex$gutable by a machine, a mechanism. He was far
ahead of his time in'that he was describing, in a primitive way, an in-
formation processing machine which, of course, is one of the basic con-
cepts of modern cybernetics. ’

Following Leibniz, little or no effort was made to develop the con-
cepts of Ars Magna because of a lack of suitable methodologies for
mathematical formulation and interpretation. Not until the 19th Century
where De Morgan, Boole, and Schroeder began to develop such methods in
the field 6f logic, did this situation begin to change.

The desire forman exact algorithmic basis for mathematics, which
evolved from set theory, led to new directions in the formalization of
logic as well as mathematics. These investigations, which dispensed
with a close analogy to algebra, were begun by Frege and Peano and they
culmipnated in Whitehead's and Russzell's monumental work Principia Mathe-
matica (1901-1908), in which it was demonstrated that much of logic and
mathematics could be represented in the form of a "calculus" (a forma-
lized language or formalized theory). Finally, the work of D. Hilbert

_and hig students as well as that of the Polish School of Logicians, who

in the ®arly 1900's contributed fundamental works on the development
and structure of formalized theories, deserves mention.

Two essential factors contributed to the adaptation of the algo-
rithmic concept by the behavioral sciences. The firot of these was the
advent of modern computer technology. The hardware suggested models
concerned with aspects of the functioning of the human mind; the soft-
ware (i.e., the programs themselves which are algorithms) led to the
more involved, °precise, and creative activivy of artificial intelligence
modeling. The description and modeling of problem solutions and isomor-
phic mental solution processes by means of algorithms offers the poten~
tial of a very high degree of precision in terms of both analysis and
representation. An excellent example of this type of development is
found in the work of Newell and Simon (1972).

The second major contributing factor was the emergeance of cyberne-
tic theory, which supplied the theoretical framework as well as the
mathematical apparatus for a synthesis of the two branches of artifical
intelligence modeling. N. Wiener (1948) supplied the fundamental theory
for general cybernetics; Glushkov (1966) contributed major extensions
to automation theory. Among the first writers to apply concepts of
cybernetic theory and of algorithmic theory to educational problems were
Frank (1962; 1969) and Landa (1966) . The latter wrote Algorithms in
Learning and Instruction, which is the most significant and seminal work

on the subject to date. The primary objective .f his model is to train
the learner in systematic methods of thinking; the method for achieving
this objective is the use of algorithms. .

67

The publication of Landa's book in the U. S. in 1974 is part of an
increasing .tendency in this country to treat basic issues in learning
and instruction In terms of theoretical constructs which are deduced

) from a cognitive-cybernetic model rather than from a purely behavioris-
4 tic model of psychology. This shift in orientation is accompanied by
the emergence of a new vocabulary, of which "algorithm" is but one word.
The term and the concept, however, are now as much a part of the educa-
tor's vocabulary as are "objectives" or "criterion referemced testing."
Yet, while "objectives" and "criterion referenced testing" are notions
which are very clearly defined and delimited in meaning an usage, "algo-
rithms" still represents a term which is in need of a precise definition.
This report attempts to accomplish just 7hat.
/

!
!
i

70

